Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21050152-8    https://doi.org/10.11896/cldb.21050152
  无机非金属及其复合材料 |
碳化高温后普通混凝土抗压强度及孔结构演化规律
赵燕茹1, 刘明1, 王磊1, 王志慧2
1 内蒙古工业大学土木工程学院,呼和浩特 010051
2 中国航空油料有限责任公司内蒙古分公司,呼和浩特 010000
Evolution Law of Concrete Strength and Pore Structure After Carbonization at High Temperature
ZHAO Yanru1, LIU Ming1, WANG Lei1, WANG Zhihui2
1 School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 China National Aviation Fuel Co., Ltd. Inner Mongolia Branch, Hohhot 010000, China
下载:  全 文 ( PDF ) ( 8716KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土建筑物在服役期间会经历碳化,也可能遭受火灾,双因素共同作用对混凝土结构的影响远大于单一因素的影响。通过X射线衍射法(XRD)、热重法(TG)、压汞法(MIP)揭示了不同碳化时间和温度对混凝土抗压强度的影响机理;采用灰熵分析方法分析了不同孔结构对抗压强度的影响。结果表明:碳化对经历不同温度的混凝土孔结构起到细化作用,提高抗压强度,尤其是在碳化中期、高温400 ℃条件下效果最佳;碳化高温后阈值孔径、孔隙率整体呈现减小趋势,小孔数量增多,密实度增加,对抗压强度的影响从大到小为阈值孔径、孔隙率、临界孔径;碳化高温后中型毛细孔占比减小,大毛细孔和凝胶孔占比增大,抗压强度与凝胶孔数量呈正相关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕茹
刘明
王磊
王志慧
关键词:  混凝土  碳化  高温  孔结构  灰熵    
Abstract: Concrete buildings may be suffered from carbonization and fire during application period. The combined effect of two factors on concrete structures is far greater than that of single factor. The methods of X-ray diffraction (XRD), thermogravimetry (TG) and mercury injection (MIP) were used to research the influence mechanism of carbonation time and temperature on the compressive strength of concrete. Grey entropy analysis was used to analyze the effect of different pore structures on compressive strength. The results show that the pore structure of concrete at different temperatures can be refined through carbonation, and the compressive strength can also be improved, especially in the middle period of carbonation with concrete under 400 ℃. After carbonization at high temperature, the threshold pore size and porosity of concrete show a decreasing trend, the number of small pores increases, and the density also increases. The influence on compressive strength from large to small is threshold pore size, porosity, critical pore size. At the same time, the proportion of medium sized pores decreases, while those of the large pores and gel pores increase. The compressive strength is positively correlated with the number of gel pores.
Key words:  concrete    carbonization    high temperature    pore structure    grey entropy
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TU528.572  
基金资助: 国家自然科学基金(11762015;11362013)
通讯作者:  zhaoyanru710523@126.com   
作者简介:  赵燕茹,博士,教授,力学博士研究生导师、土木工程硕士研究生导师。1993年7月,毕业于内蒙古工业大学建筑工程系结构工程专业,获得学士学位;1999年7月,毕业于内蒙古工业大学力学系固体力学专业,获得硕士学位;2008年7月,毕业于内蒙古工业大学力学系固体力学专业,获得博士学位。现就职于内蒙古工业大学土木工程学院建筑工程系。主要研究混凝土力学性能及耐久性能、电子束云纹技术及其应用、纤维增强复合材料界面力学性能。已发表论文50余篇。
引用本文:    
赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
ZHAO Yanru, LIU Ming, WANG Lei, WANG Zhihui. Evolution Law of Concrete Strength and Pore Structure After Carbonization at High Temperature. Materials Reports, 2022, 36(19): 21050152-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050152  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21050152
1 Han Jiande, Sun Wei, Pan Ganghua. Journal of the Chinese Ceramic Society, 2012,40(8), 1143(in Chinese).
韩建德, 孙伟, 潘钢华. 硅酸盐学报, 2012,40(8), 1143.
2 Chi Peiyun,Liang Yongfeng,Yu Sujian. Concrete,2001(8),12(in Chinese).
迟培云, 梁永峰, 于素健. 混凝土, 2001(8),12.
3 Fang Jing, Mei Guoxing, Lu Cairong. Water Resources and Hydropower Technology, 1996(2), 58( in Chinese).
方璟, 梅国兴, 陆采荣. 水利水电技术, 1996(2), 58.
4 Zheng Yonglai, Zheng Jieqiong, Zhang Mei. Journal of Tongji University (Natural Science Edition), 2010,38(3), 412( in Chinese).
郑永来, 郑洁琼, 张梅. 同济大学学报(自然科学版),2010,38(3), 412.
5 Wu Bo, Tang Guihe. Journal of Building Structures,2010,31(6), 110(in Chinese).
吴波,唐贵和. 建筑结构学报,2010,31(6), 110.
6 Zheng Wenzhong, Yan Kai, Wang Ying. Journal of Building Structures,2011,32(12), 52(in Chinese).
郑文忠,闫凯,王英. 建筑结构学报,2011,32(12), 52.
7 Ma Qianmin, Guo Rongxin, Zhao Zhiman, et al. Construction and Buil-ding Materials, 2015,93, 371.
8 Zhang Bai,Chen Jun,Yang Ou, et al. Building Structure, 2019,49(4),76(in Chinese).
张白,陈俊,杨鸥,等. 建筑结构,2019,49(4),76.
9 Janotka I,Nürnbergerová T. Nuclear Engineering & Design,2005,235(17), 2019.
10 Shen Jiarong,Xu Qianjun. Materials Reports B: Research Papers, 2020,34(1),02046( in Chinese).
申嘉荣,徐千军. 材料导报:研究篇,2020,34(1), 02046.
11 Kumar R,Bhattacharjee B. Cement and Concrete Research,2003,33(1), 155.
12 Ozturk A U, Baradan B. Computational Materials Science, 2008, 43(4),974.
13 Matusinovi T, Ipui J, Vrbos N. Cement & Concrete Research,2003,33(11), 1801.
14 GB/T50082-2009, Standard for long-term performance and durability test method of ordinary concrete, China Construction Industry Press, China, 2009( in Chinese).
GB/T50082-2009,普通混凝土长期性能和耐久性能试验方法标准, 中国建筑工业出版社,2009.
15 Wang Lei. Experimental study on mechanical properties and damage evolution of basalt fiber concrete after high temperature. Master's Thesis, Inner Mongolia University of Technology, China,2017( in Chinese).
王磊. 玄武岩纤维混凝土高温后力学性能及损伤演化试验研究. 硕士学位论文,内蒙古工业大学, 2017.
16 GB/T50081-2002, Standard for test methods of mechanical properties of ordinary concrete, China Building Industry Press, China, 2002(in Chinese).
GB/T50081-2002,普通混凝土力学性能试验方法标准, 中国建筑工业出版社,2002.
17 Li Bei,Jin Nanguo,Tian Ye, et al. Concrete and Cement Products,2020(10), 80(in Chinese).
李蓓,金南国,田野,等. 混凝土与水泥制品,2020(10), 80.
18 Rawaz K, Jorge de B, José D S. Journal of CO2 Utilization, 2019, 29, 12.
19 Vagelis G P, Costas G V, Michael N F. Chemical Engineering Science,1991,46, 1333.
20 Liu Xiguang, Niu Ditao, Li Xingchen, et al. Construction and Building Materials, 2018, 186, 1276.
21 Zeng Qiang, Wang Xiaohu, Yang Pengcheng, et al. Materials Charac-terization, 2019,151, 203.
22 Pipilikaki P, Beazi-Katsioti M. Construction and Building Materials, 2009, 23(5), 1966.
23 Li C Z. Composites Part B: Engineering, 2020,197, 108189.
24 Du Dong, Pang Qinghua. Modern comprehensive evaluation methods and selected cases, Tsinghua University Press, China, 2005( in Chinese).
杜栋,庞庆华. 现代综合评价方法与案列精选, 清华大学出版社,2005.
[1] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[2] 温希平, 唐帅, 彭庆, 张宪法, 李林鲜, 刘振宇, 王国栋. NaCl型过渡金属碳化物稳定性及力学性质的第一性原理计算[J]. 材料导报, 2022, 36(Z1): 21090072-6.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[5] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[9] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[10] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[11] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[12] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[13] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[14] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[15] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed