Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19030-19035    https://doi.org/10.11896/cldb.20080287
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究
侯永强1,2, 尹升华1,2, 赵国亮3,4, 张鹏强3,4, 杨世兴1,2, 张敏哲1,2, 刘洪斌1,2
1 北京科技大学土木与资源工程学院,北京 100083
2 金属矿山高效开采与安全教育部重点实验室,北京 100083
3 金川集团股份有限公司,镍钴资源综合利用国家重点实验室,金昌 737100
4 金川镍钴研究设计院有限责任公司,金昌 737100
Study on the Mechanical and Flow Properties of Polypropylene Fiber Reinforced Cemented Tailings Backfill
HOU Yongqiang1,2, YIN Shenghua1,2, ZHAO Guoliang3,4, ZHANG Pengqiang3,4, YANG Shixing1,2, ZHANG Minzhe1,2, LIU Hongbin1,2
1 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory of High-Efficient Mining and Safety of Metal Mines, Ministry of Education, Beijing 100083, China
3 National Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Co., Ltd., Jinchang, 737100, China
4 Jinchuan Nickel Cobalt Research and Design Institute, Jinchang 737100, China
下载:  全 文 ( PDF ) ( 4798KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对聚丙烯纤维掺量、长度及矿渣掺量这三种因素对尾砂胶结充填体力学及流动性能的影响,进行正交试验设计。通过对试验结果进行极差和方差分析,得到了这三种因素对尾砂胶结充填体力学及流动性的影响程度和显著性影响因素,并借助扫描电镜(SEM)揭示了纤维对充填体力学性能的作用机理。研究结果表明:随着纤维掺量及长度的增加,充填料浆坍落度分别下降了8.7%和4.3%,说明纤维的掺入会对料浆流动性能产生不利的影响;充填体28 d抗压强度、抗拉强度均随着纤维掺量的增加呈先增加后减小的趋势,并在纤维掺量为0.6%时达到最大值,但纤维对充填体抗拉强度的改善效果明显优于对抗压强度的改善效果;矿渣的掺入对纤维增强尾砂胶结充填体流动性能无显著影响,但矿渣掺量的增加使得充填体抗压及抗拉强度分别降低了17.9%、19.7%,说明矿渣的掺入会对尾砂胶结充填体力学性能产生不利影响;纤维的掺入能够有效限制充填体裂纹的扩展,且随着纤维掺量的增加,充填体破坏特征由脆性向延性转变;纤维增强尾砂胶结充填体力学性能的关键在于纤维与砂浆基体界面存在粘结力,使得横跨于裂缝两侧的纤维能够形成“锚固”作用,从而提高充填体的整体力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯永强
尹升华
赵国亮
张鹏强
杨世兴
张敏哲
刘洪斌
关键词:  聚丙烯纤维  尾砂胶结充填体  力学性能  流动性能  正交试验    
Abstract: Aiming at the influence of polypropylene fiber content, length and slag content on the mechanical and flow properties of polypropylene fiber reinforced cemented tailings backfill, an orthogonal experimental design was carried out. Through the range and variance analysis of the test results, the degree of influence and significant influence factors of the three factors are obtained, and the mechanism of the influence of fibers on the mechanical properties of the cemented tailings backfill is revealed with the help of scanning electron microscope (SEM). The research results show that: the slump of filler slurry decreased by 8.7% and 4.3% with the increase of fiber content and length indicating that the incorporation of fibers can have an adverse effect on the fluidity of the slurry; the compressive strength and tensile strength of the cemented tailings backfill at 28 d both increase first and then decrease with the increase of the fiber content and reach the maximum when the fiber content is 0.6%, but the improvement effect of the tensile strength of the polypropylene fiber by the fiber is obviously better than compressive strength; the incorporation of slag has no significant effect on the fluidity of the cemented tailings backfill, but the increase in slag content reduces the compressive and tensile strength of the backfill by 17.9% and 19.7%, which shows that the incorporation of slag will adversely affect the mechanical properties of the fiber reinforced cemented tailings backfill; the incorporation of fibers can effectively limit the propagation of cracks in the cemented tailings backfill and the failure characteristics of the cemented tailings backfill change from brittleness to ductility with the increase of fiber content; the key to the mechanical properties of the fiber-reinforced backfill is that there is a bonding force between the fiber and the mortar matrix, so that the fibers across the cracks can form an “anchor” effect thereby improving the overall mechanical properties of the backfill.
Key words:  polypropylene fiber    cemented tailings backfill    mechanical property    flow property    orthogonal test
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TD853  
基金资助: 镍钴资源综合利用国家重点实验室基金项目(201902);国家自然科学基金重点项目(51734001);中央高校基本科研业务费专项
通讯作者:  ustxsh@163.com   
作者简介:  侯永强,北京科技大学土木与资源工程学院资源工程系博士研究生,主要研究充填体力学及充填材料。
尹升华,北京科技大学土木与资源工程学院采矿工程专业教授,博士研究生导师。研究方向为溶浸采矿、金属矿高效开采及矿山岩体力学。
引用本文:    
侯永强, 尹升华, 赵国亮, 张鹏强, 杨世兴, 张敏哲, 刘洪斌. 聚丙烯纤维增强尾砂胶结充填体力学及流动性能研究[J]. 材料导报, 2021, 35(19): 19030-19035.
HOU Yongqiang, YIN Shenghua, ZHAO Guoliang, ZHANG Pengqiang, YANG Shixing, ZHANG Minzhe, LIU Hongbin. Study on the Mechanical and Flow Properties of Polypropylene Fiber Reinforced Cemented Tailings Backfill. Materials Reports, 2021, 35(19): 19030-19035.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080287  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19030
1 Han B, Wang X L, Xiao W G. Journal of Mining & Safety Engineering, 2012,29(5),714(in Chinese).
韩斌,王贤来,肖卫国.采矿与安全工程学报, 2012,29(5),714.
2 Wang X M, Xue X L, Zhang Q L, et al. Journal of Central South University (Science and Technology), 2015,46(10), 3767(in Chinese).
王新民, 薛希龙, 张钦礼, 等.中南大学学报(自然科学版), 2015,46(10),3767.
3 Xu W B, Du J H, Song W D, et al. Rock and Soil Mechanics, 2013,34(8),2295(in Chinese).
徐文彬, 杜建华, 宋卫东, 等.岩土力学, 2013,34(8),2295.
4 Gao J K, Yang C X. Chinese Journal of Rock Mechanics and Enginee-ring, 2003,22(Sup2),2625(in Chinese).
高建科, 杨长祥. 岩石力学与工程学报,2003,22(增刊2):2625.
5 Cheng A P, Dai S Y, Zhang Y S, et al. Chinese Journal of Rock Mecha-nics and Engineering, 2019,38(S1), 3053(in Chinese).
程爱平, 戴顺意, 张玉山, 等.岩石力学与工程学报,2019,38(S1),3053.
6 Li X B, Liu B, Yao J R, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(9),1845(in Chinese).
李夕兵, 刘冰, 姚金蕊, 等. 中国有色金属学报,2018,28(9),1845.
7 Zhang X X, Qiao D P. The Chinese Journal of Nonferrous Metals, 2015, 25(1),258(in Chinese).
张修香, 乔登攀. 中国有色金属学报, 2015, 25(1), 258.
8 Yu R C. Mining Technology, 2011, 11(3), 1(in Chinese).
于润沧.采矿技术, 2011, 11(3),1.
9 Liu F Y, Ding W Q, Qiao Y F. Construction and Building Materials, 2019,212,675.
10 Chen L J, Zhang X X, Liu G M. 2020. Construction and Building Materials, 2020,254,119167.
11 Liu X, Wu T, Yang X, et al. Journal of Building Materials, 2019,22(5),700(in Chinese).
刘喜, 吴涛, 杨雪, 等. 建筑材料学报, 2019,22(5),700.
12 Wang C Q, Wu K R. Journal of Building Materials,2005(3),250(in Chinese).
王成启, 吴科如. 建筑材料学报, 2005(3),250.
13 Chen X, Shi X Z, Zhou J, et al. Construction and Building Materials, 2018,190,211.
14 Yi X W, Ma G W, Fourie A. Geotextiles and Geomembranes, 2015,43,207.
15 Cao S, Yilmaz E, Song W D. Construction and Building Materials,2019,223,44.
16 Xue G L, Yilmaz E, Song W D, et al. Construction and Building Mate-rials, 2020,241,118113.
17 Xu Z J. Technology and application of fiber reinforced concrete, China Architecture & Building Press,China,2003(in Chinese).
徐志军. 纤维混凝土技术与应用, 中国建筑工业出版社, 2003.
18 Zhong H, Zhang M Z. Journal of Cleaner Production, 2020,259,120914.
19 Li X, Sun Q H, Yuan Y, et al. 2020. Tunnelling and Underground Space Technology, 2020, 103, 103506.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed