Please wait a minute...
材料导报  2020, Vol. 34 Issue (7): 7107-7114    https://doi.org/10.11896/cldb.19010091
  无机非金属及其复合材料 |
纳米压痕技术应用于水泥基材料的研究进展
盖海东1, 冯春花1, 董一娇1, 赵倩1, 李东旭2
1 河南理工大学材料科学与工程学院,焦作 454000;
2 南京工业大学材料科学与工程学院,南京 210009
A Review on the Application of Nanoindentation in the Research of Cement-based Materials
GE Haidong1, FENG Chunhua1, DONG Yijiao1, ZHAO Qian1, LI Dongxu2
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009, China
下载:  全 文 ( PDF ) ( 2944KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥基复合材料作为一种重要的土木工程材料,在国民经济建设中起着举足轻重的作用。目前人们对于其力学性能的研究主要集中于抗压、抗折等宏观力学性能,相比之下,对其微观力学性能的研究较少。鉴于材料的宏观力学性能很大程度上依赖于其微观结构及微观力学性能,因此,从微观层面去探究水泥基材料的性能机理已成为目前研究的热点之一。随着材料微观测试技术的发展,目前纳米压痕技术已成为最先进的定量表征水泥基材料微观力学性能的测试手段。
   然而水泥基材料是一种非均质材料,其水化产物含有多种成分,导致人们在物相划分和定量分析时常常受到经验性的束缚,因此水泥基材料的性能远未达到人们预期的要求。通过极大似然或最小二乘法对压痕数据进行解卷积处理,可实现实验结果定量化,大大地改变了之前人为划分物相引起的不准确性的状况,使得研究问题的方法提升到一个新的高度。
   纳米压痕技术不仅可以测试水泥熟料成分(硅酸三钙(C3S)、硅酸二钙(C2S)、铝酸三钙(C3A)等)的弹性模量和硬度,还可测试水泥基材料水化产物(不同密度的水化硅酸钙凝胶(C-S-H)、氢氧化钙(CH)等)的微观力学性能及水化产物未填充的孔隙。通过改变实验加载制度,尤其是持荷的停留时间,能够在很短的时间内测得微观蠕变模量并且可以定量预测水泥基材料的宏观徐变性能;将其与其他微观测试手段(SEM、EDS等)联用来揭示水泥基材料紧密混合相的微观力学性质,能够区分出具有强烈重叠微观力学性质的化学相,这使得纳米压痕技术成为更精确的物相分析方法;通过观测界面过渡区微观结构的变化情况,可以为界面过渡区强度理论提供一定的理论补充和技术支持。
   本文主要介绍了纳米压痕技术的基本原理和样品制备,并从纳米压痕技术研究水泥基材料水化产物分相及微观力学特性、蠕变性能以及界面特性三个方面阐述了其在水泥基材料中的研究现状和相关成果,对目前研究中存在的问题进行了分析,并展望了其在水泥基材料研究中的发展趋势,以期为它更广泛深入地检测和研究水泥基材料微观性能提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
盖海东
冯春花
董一娇
赵倩
李东旭
关键词:  纳米压痕  水泥基材料  水化产物分相  微观力学特性  蠕变性能  界面特性    
Abstract: As an important civil engineering material, cement-based material plays an important role in the national economic construction. At present, relevant researches on its mechanical properties mainly focus on the macroscopic mechanical properties such as compression and flexural resistance. In contrast, its micromechanical properties are relatively less studied. In view of the fact that the macroscopic mechanical properties of materials depended on the structural composition and mechanical properties at the microscopic level, it is one of the hotspots of current research to explore the performance mechanism of cement-based materials from the microscopic level. With the development of mechanical testing method of materials, nanoindentation technique has become the most advanced testing method for quantitatively characterizing the micro-mechanical properties of cement-based materials.
On the other hand,the cement-based material is a heterogeneous material, and its hydration product contains a plurality of components. People are often subject to empirical constraints in phase division and quantitative analysis. Therefore, the performance of cement-based materials is far from to meet people’s demand. But the test data can be deconvoluted using the principle of maximum likelihood or least squares, thereby realizes the quantification of the compositions and dramatically improves the precision of the analysis.
Nanoindentation technique can not only test the elastic modulus and hardness of the cement clinker (tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A), etc.), but also test the micromechanical properties for the hydration product (hydrated calcium silicate gel (C-S-H), calcium hydroxide (CH), etc.) of cement-based materials and pores. By changing the loading system, especially the residence time of the load, the micro creep modulus can be measured in a short time and the macroscopic creep properties of the cement-based material can be quantitatively predicted. When combined with other microscopic testing methods (SEM, EDS, etc.), the latest chemo-mechanical technique can disclose the micro-mechanical properties of intimately intermixed phases and enable to distinguish chemical phases having strongly overlapping mechanical properties. So the phase can be accurately divided. By means of the change of the microstructure of the transition zone of the observation interface, it can provide certain theoretical supplement and technical support for the strength theory of the interface transition zone.
This paper mainly introduces the basic principle of nanoindentation technique, sample preparation, and studies the phase-separation and micro-mechanical properties, creep properties and interface transition zone of cement-based materials from nanoindentation. Research status and rela-ted results are illustrated, and the problems existing on the current researches are analyzed, and the development trend in the research is prospected,in an effort to provide a reference to the extensive and in-depth study of the micro-performances of the cement-based material.
Key words:  cement-based materials    nanoindentation    phase separation of hydration products    micromechanical properties    creep property    interfacial characteristic
                    发布日期:  2020-04-10
ZTFLH:  TU525  
  TU528  
基金资助: 国家自然科学基金青年基金项目(51502080;51872137)
通讯作者:  fengchunhua@hpu.edu.cn   
作者简介:  盖海东,2018年6月毕业于太原科技大学,获得工学学士学位。现为河南理工大学材料科学与工程学院硕士研究生,在冯春花老师的指导下进行研究。目前主要研究领域为固废处理及绿色建筑材料。
冯春花,河南理工大学材料科学与工程学院,讲师。2012年6月毕业于南京工业大学,材料学,博士。同年加入河南理工大学工作至今,主要从事水泥水化机理及固废利用方面的研究。在国内外重要期刊发表文章10余篇。
引用本文:    
盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
GE Haidong, FENG Chunhua, DONG Yijiao, ZHAO Qian, LI Dongxu. A Review on the Application of Nanoindentation in the Research of Cement-based Materials. Materials Reports, 2020, 34(7): 7107-7114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010091  或          http://www.mater-rep.com/CN/Y2020/V34/I7/7107
1 Brown L,Allison P G,Sanchez F.Materials and Design,2018,142, 309.
2 Gao X. Analysis of properties of cement-based materials by nanoindentation technique. Master’s Thesis, Research Institute of Highway M.O.T, China, 2014(in Chinese).
高翔. 纳米压痕技术研究水泥基材料基本性能. 硕士学位论文, 交通运输部公路科学研究所, 2014.
3 Constantinides G,Ulm F J. Jouranl of Mechanics and Physics of Solids,2007,55, 64.
4 Nemecek J,Smilauer V,Kopecky L.Cement and Concrete Composites,2011,33, 163.
5 Nezerka V, Nemecek J, et al. Cement and Concrete Composites,2015, 55,122.
6 Papatzani S,Pain K,Calabria-Holley J. Construction and Building Mate-rials,2015, 74,219.
7 Constantinides G,Ulm F J. Cement and concrete research,2004, 34,67.
8 Guo D Z,Lin X,Zhao Y Q,et al. Materials Review A: Review Papers,2011, 25(7), 10(in Chinese).
郭荻子,林鑫,赵永庆,等. 材料导报:综述篇, 2011, 25(7), 10.
9 Pharr G M,Bolshakov A. Materials Research,2002,17,2660.
10 Oliver W C,Pharr G M. Journal of Materials Research,2004, 19, 3.
11 Niu H M,Wu W H,Li X L,et al. Bulletin of the Chinese Ceramic Society,2016,35(8),2439(in Chinese).
牛恒茂,武文红,李仙兰,等.硅酸盐通报,2016,35(8), 2439.
12 Vandamme M,Ulm F J.Proceedings of the National Academy of Sciences of the United States of America,2009,106 (26),10552.
13 Hu C L. Materials Research Society, 2015, 5, 83.
14 Wei Y,Gao X,Liang S M. Acta Materiae Compositae Sinica,2017,34(5), 1123(in Chinese).
魏亚,高翔,梁思明. 复合 材料学报,2017,34(5),1123.
15 Brown L,Allison P G,Sanchez F. Materials and Design, 2018,142, 308.
16 Le H T,Muller M,Siewert K,et al. Materials and Design, 2015,74, 51.
17 Nemecek J,Smilauer V, Kopecky L. Cement and Concrete Composites, 2011, 33 (2),163.
18 Lee H,Vimonsatit V,Chindaprasirt P. Construction and Building Mate-rials, 2016, 107, 95.
19 Liu R G,Han F H, Yan P Y. Science China.Technological Sciences,2013,56, 1395.
20 Cao Y Z,Tian N N,Bahr D,et al. Cement and Concrete Composites, 2016, 74,164.
21 Thomas R J,Gebregziabiher B S,Giffin A, et al.Cement and Concrete Composites,2018,90,241.
22 Gebregziabiher B S,Thomas R,Peethamparan S. Cement and Concrete Composites, 2015,55, 91.
23 Puertas F,Palacios M,Manzano H,et al. Journal of the European Ceramic Society,2011,31 (12),2043.
24 Thomas J J,Allen A J,Jennings H M. Cement and Concrete Research,2012, 42 (2),377.
25 Sebastiani M,Moscatelli R,Ridi F,et al. Materials and Design, 2016, 97,372.
26 Wilson W,Sorelli L,Tagnit-Hamou A.Cement and Concrete Research , 2018,103,49.
27 Nemecek J.Materials Characterization, 2009, 60,1028.
28 Chen J K,Qian C.Construction and Building Materials,2017, 147,558.
29 Vandamme M,Ulm F J. Cement and Concrete Research,2013,52,38.
30 Chen R H,Qiao P Z. Chinese Quarterly of Mechanics,2015,36(1), 88(in Chinese).
陈仁宏,乔丕忠.力学季刊,2015,36(1), 88.
31 Tamtsia B T,Beaudoin J J. Cement and Concrete Research ,2000,30,1465.
32 Jones C A,Grasley Z C. Cement and Concrete Composites, 2011,33,12.
33 Zhou Y,She W,Hou D S,et al. Construction and Building Materials , 2018, 182, 459.
34 Lee H,Vimonsatit V,Chindaprasirt P,et al. Construction and Building Materials, 2018, 168,547.
35 He Z H, Zhan P M,Du S G,et al. Composites Part B, 2019, 166,13.
36 Afshinnia K,Rangaraju P R.Construction and Building Materials,2015, 100,234.
37 He Z H,Li L Y,Du S G. Cement and Concrete Composites,2017,80,190.
38 Zhu X Y,Yuan Y,Li L H,et al. Construction and Building Materials,2016, 127,627.
39 Xie Y T,Corr D J,Jin F,et al. Cement and Concrete Composites,2015, 55,223.
40 Allison P G,Moser R D,Weiss C A,et al. Construction and Building Materials, 2012,37, 638.
41 Xu J,Wang B B,Zhao S C. Journa of Building Materials,2017,20(1), 7(in Chinese).
徐晶,王彬彬,赵思晨. 建筑材料学报,2017,20(1),7.
42 Hou P K,Kawashima S,Kong D Y, et al. Cement and Concrete Compo-sites,2013,36,8.
43 Xu J, Corr D J, Shah S P. Cement and Concrete Composites, 2015, 61,7.
44 Xu J,Wang B B,Zuo J Q.Cement and Concrete Composites,2017,81, 1.
45 Teixeira R S, Tonoli G H D, Santos S F, et al. Cement and Concrete Composites, 2018, 85, 1.
46 da Silva W R L,Nemecek J,Stemberk P. Cement and Concrete Compo-sites,2014,45,57.
47 Xu L H,Deng F Q,Chi Y. Construction and Building Materials, 2017,145,619.
48 Zacharda V,Stemberk P, Nemecek J. Key Engineering Materials, 2018,760,251.
49 Sorelli L,Constantinides G,Ulm F J,et al. Cement and Concrete Research, 2008, 38,1447.
50 Xu J,Yao W.Cement and Concrete Research, 2014,64,1.
51 Nezerka V,Nemecek J,Slizkova Z,et al. Cement and Concrete Compo-sites, 2015,55,122.
52 Zhan H G. The influence of aggregate-matrix interface on the carbonization property of cement-based materials. Master’s Thesis, Southeast University, China, 2015(in Chinese).
占化刚.集料-基体界面对水泥基材料碳化性能的影响. 硕士学位论文,东南大学,2015.
53 Gu W H,Xu F,Wang S G, et al. In: 2018 2nd International Workshop on Renewable Energy and Development (IWRED 2018). Guangxi, 2018, pp. 7.
[1] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[2] 梁辰, 吴艳青, 王大伟, 王晗, 刘乐乐, 赵丕琪. 纳米TiO2光催化水泥基材料的研究进展[J]. 材料导报, 2019, 33(Z2): 267-272.
[3] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[4] 陈庆, 王慧, 蒋正武, 朱合华, 马瑞. 基于中心粒子模型的超高性能水泥基材料水化进程模拟[J]. 材料导报, 2019, 33(8): 1312-1316.
[5] 黄柯,赵阳,张昌松,王晓明,常青,邱六,关雪飞. PREP法制备球形CuAl10Fe3铜合金粉末的性能表征[J]. 材料导报, 2019, 33(22): 3783-3788.
[6] 王策, 马爱斌, 刘欢, 黄河, 孙甲鹏, 杨振权, 江静华. LPSO相增强镁稀土合金耐热性能研究进展[J]. 材料导报, 2019, 33(19): 3298-3305.
[7] 刘律宏, 刘燕萍, 马晋遥, 桑利军, 程晓鹏, 张跃飞. 利用原位压痕技术表征原子层沉积Al2O3超薄纳米薄膜的力学性能[J]. 材料导报, 2019, 33(18): 3026-3030.
[8] 姚未来,江世永,蔡涛,龚宏伟,陶帅. 粘贴纤维增强复合材料加固混凝土梁的蠕变特性研究进展[J]. 材料导报, 2019, 33(17): 2890-2901.
[9] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[10] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[11] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[12] 张王田, 张云升, 吴志涛, 刘乃东, 袁涤非. 玻璃纤维增强水泥基材料组成优化设计与性能[J]. 材料导报, 2019, 33(14): 2331-2336.
[13] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[14] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[15] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed