Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080049-9    https://doi.org/10.11896/cldb.23080049
  特种工程材料 |
基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型
孙涛, 王辉*, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌
中国人民解放军陆军勤务学院,重庆 401331
Retention Factor-based Stress-Strain Models of Austenitic Stainless-Steel Bolts at Elevated Temperatures
SUN Tao, WANG Hui*, ZHANG Lei, LIU Xiaoying, ZHAO Honggang, JIANG Wei, CHENG Xinlei, HE Xiaoyong
Army Logistics Academy of PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 6199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不锈钢螺栓具有显著的耐久性、延性和耐火性,因此它们被广泛地应用于栓接的半刚性节点中。不锈钢螺栓如同其基材(不锈钢棒材)一样,在常温和高温下都表现出平滑的非线性特征,并且它们的应力-应变曲线中没有明确定义的屈服点。这种材料行为可以用不同的材料模型来表征,其中最常用的是Ramberg-Osgood公式或其修订版。然而,在现存不锈钢的材料模型中,相关力学参数的预测公式并不适用于经受冷作硬化和冷铸工艺的奥氏体和双相体不锈钢螺栓。因此,本工作基于先前研究中高温下不锈钢螺栓的折减因子建立它们的非线性高温材料模型。倘若在五个常温力学参数(杨氏模量、比例极限、屈服强度、极限强度和极限应变)已知的情况下,基于高温折减公式计算某一温度下的五个力学参数,进而评估试验应力-应变曲线与预测曲线之间的相关性。这种预测方法表明预测曲线与试验曲线具有明显的一致性,说明基于折减因子所建立的高温材料模型具有准确的预测精度。因此,联合不锈钢螺栓的高温折减公式,基于常温下的五个力学参数就可以准确预测其在某一温度下的应力-应变曲线。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙涛
王辉
张蕾
刘晓英
赵宏刚
蒋伟
成鑫磊
何小涌
关键词:  奥氏体不锈钢螺栓  高温  折减因子  应力-应变曲线  非线性本构模型    
Abstract: Stainless steel bolts are increasingly used in bolted semi-rigid connections due to their remarkable durability, ductility, and fire resistance. Stainless steel bolts, like their base material (stainless steel bars), exhibit smooth non-linear characteristics at both ambient and elevated temperatures, and they do not have a well-defined yield point in their stress-strain curves. This material behavior can be analytically represented by different material models, the most popular of which is based on the Ramberg-Osgood formulation or its extensions thereof. However, the available prediction formulas for the associated parameters in the material model of stainless steels are not necessarily applicable to austenitic and duplex stainless steel bolts subjected to work-hardening and cold-forging processes. Therefore, this paper proposes a nonlinear elevated tempe-rature constitutive model for stainless steel bolts based on their high-temperature reduction factors from previous studies. Supposing that five mechanical parameters (Young's modulus, proportional limit, yield strength, ultimate strength, and ultimate strain) are given at ambient temperature, and the reduction formulas derived for stainless steel bolts is used to obtain five mechanical parameters at a specified temperature and to evaluate the correlation of the tested stress-strain curve with the predicted one. This prediction methodology shows that the predicted curve is in clear agreement with the tested one, which is shown to be that the elevated temperature material model based on the reduction factor has consi-derable prediction accuracy. Thus, a stress-strain curve at a given temperature can be predicted based on five mechanical parameters at ambient temperature by combining the elevated temperature reduction equations for stainless steel bolts.
Key words:  austenitic stainless-steel bolts    elevated temperature    reduction factor    stress-strain curve    nonlinear constitutive model
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU391  
  TG142.25  
基金资助: 重庆市教育委员会科学技术研究项目(KJZD-K202112901)
通讯作者:  *王辉,中国人民解放军陆军勤务学院讲师。2022年6月取得重庆大学土木工程专业博士学位,主要从事钢结构及其抗火性能的研究。近年来在专业领域SCI和EI期刊发表8篇论文,包括Engineering Structures、Fire Safety Journal、Journal of Materials in Civil Engineering、Thin-walled Structures、Journal of Construction Steel Research、《建筑结构学报》等。 wunghui@hotmail.com   
作者简介:  孙涛,中国人民解放军陆军勤务学院副教授。2012年天津大学结构工程专业博士毕业后,到中国人民解放军陆军勤务学院工作至今。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。近年来在EI期刊和核心期刊上发表30余篇论文,包括《建筑结构学报》《后勤工程学院学报》《空间结构》《建筑结构》《土木工程学报》《土木与环境工程学报》等。
引用本文:    
孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
SUN Tao, WANG Hui, ZHANG Lei, LIU Xiaoying, ZHAO Honggang, JIANG Wei, CHENG Xinlei, HE Xiaoyong. Retention Factor-based Stress-Strain Models of Austenitic Stainless-Steel Bolts at Elevated Temperatures. Materials Reports, 2024, 38(5): 23080049-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080049  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23080049
1 Wang H. Behaviour of high strength steel double web angle connections assembled by austenitic bolts during and after fire. Ph. D. Thesis, Chongqing University, China, 2022(in Chinese).
王辉. 奥氏体螺栓装配高强双角钢节点的抗火性能. 博士学位论文, 重庆大学, 2022.
2 Elflah M, Theofanous M, Dirar S, et al. Journal of Constructional Steel Research, 2019, 152, 183.
3 Elflah M, Theofanous M, Dirar S. Journal of Constructional Steel Research, 2019, 152, 194.
4 Elflah M, Theofanous M, Dirar S, et al. Engineering Structures, 2019, 184, 158.
5 Fu W. Enhanced fire resistance of austenitic high-strength bolts A4L-80 and their connected beam-to-column joints with angles. Master's Thesis, Chongqing University, China, 2023(in Chinese).
付卫. A4L-80奥氏体高强螺栓及其连接角钢梁柱节点的抗火性能研究. 硕士学位论文, 重庆大学, 2023.
6 Song Y, Yam M C, Wang J. Engineering Structures, 2023, 275, 115337.
7 Wang H, Hu Y, Wang X Q, et al. Engineering Structures, 2021, 235, 111973.
8 Wang H, Nie S, Li J Y. Fire Safety Journal, 2022, 129, 103563.
9 Wang H, Nie S, Li J, et al. Journal of Materials in Civil Engineering, 2023, 35(5), 04023076.
10 Ramberg W, Osgood W R. Description of stress-strain curves by three parameters (Technical notes No. 902), National Advisory Committee for Aeronautics, Washington DC, USA, 1943.
11 Hill H N. Determination of stress-strain relations from the offset yield strength values (Technical note No. 927), National Advisory Committee for Aeronautics, Washington DC, USA,1944.
12 Holmquist J L. Drilling and Production Practice, 1939, 392-420.
13 Mirambell E, Real E. Journal of Constructional Steel Research, 2000, 54(4), 109.
14 Rasmussen K J R. Journal of Constructional Steel Research, 2003, 59(1), 47.
15 Gardner L, Ashraf M. Engineering Structures, 2006, 28(6), 926.
16 Quach W M, Teng J G, Chung K F. Journal of Structural Engineering, 2008, 134(9), 1518.
17 Hradil P, Talja A, Real E, et al. Thin-Walled Structures, 2013, 63, 63.
18 Quach, W M, Huang J F. Procedia Engineering, 2011,14, 288.
19 Arrayago I, Real E, Gardner L. Materials and Design, 2015, 87, 540.
20 EN 1993-1-4:2006. Eurocode 3, design of steel structures-part 1-4: general rules-supplementary rules for stainless steels, Brussels (Belgium): Comité Européen de Normalisation (CEN), 2006.
21 EN 1993-1-4:2006+A1:2015. Eurocode 3, design of steel structures-part 1-4: general rules-supplementary rules for stainless steels, Brussels (Belgium): Comité Européen de Normalisation (CEN), 2015.
22 SCI. Design manual for structural stainless steel (fourth ed., SCI Publication No. P413), The Steel Construction Institute (SCI), UK, 2017.
23 American Institute of Steel Construction(AISC). Specification for structural stainless steel buildings (ANSI/AISC 370), Chicago: AISC, 2021.
24 Rasmussen K J R, Hancock G J. Journal of Structural Engineering, 193, 119(8), 2368.
25 Real E, Arrayago I, Mirambell E, et al. Thin-Walled Structures, 2014, 83, 2.
26 Yun X, Wang Z, Gardner L. Journal of Structural Engineering, 2021, 147(6), 04021060.
27 Gardner L, Yun X. Construction and Building Materials, 2018, 189, 527.
28 Rokilan M, Mahendran M. Journal of Constructional Steel Research, 2020, 167, 105851.
29 Mäkeläinen P, Outinen J. Journal of Constructional Steel Research, 1998, 46 (1-3), 455.
30 Chen J, Young B. Engineering Structures, 2006, 28(2), 229.
31 Gardner L, Insausti A, Ng K T, et al. Journal of Constructional Steel Research, 2010, 66(5), 634.
32 Gardner L, Bu Y, Francis P, et al. Construction and Building Materials, 2016, 114, 977.
33 Huang Y, Young B. Journal of Constructional Steel Research, 2014, 92, 103.
34 Wang X Q, Tao Z, Song T Y, et al. Journal of Constructional Steel Research, 2014, 99, 129.
35 Tao Z, Wang X Q, Hassan M K, et al. Journal of Constructional Steel Research, 2019, 152, 296.
[1] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[2] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[3] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[4] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[5] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[6] 宋天诣, 曲星宇, 潘竹. 地聚物的耐高温性能研究进展[J]. 材料导报, 2023, 37(8): 21060242-9.
[7] 徐艳茹, 汪燕青, 陈焕明, 马骏, 侯毅. 高温快速退火制备AgNPs/SiO2中保温时间对粒径和形貌的影响[J]. 材料导报, 2023, 37(7): 21060278-5.
[8] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[9] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[10] 张鑫, 尹航, 赵而年, 刘金辉. 高温(火灾)后Q355qNH桥梁耐候钢的力学性能试验研究[J]. 材料导报, 2023, 37(23): 22050150-6.
[11] 张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
[12] 王杰, 黄海亮, 周亚洲, 张华, 阮晶晶, 周鑫, 张尚洲, 江亮. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 23020100-9.
[13] 李正宁, 喇培清, 孟倩, 王鸿鼎, 王文科, 康纪龙, 蒲永亮. 自蔓延高温合成先进材料的研究新进展[J]. 材料导报, 2023, 37(19): 22030161-8.
[14] 王旋, 宋凯强, 张敏, 丛大龙, 彭冬, 丁星星, 白懿心, 黄安畏, 李忠盛. 锆钛酸铅压电陶瓷元件高温老化行为及其微观机制[J]. 材料导报, 2023, 37(18): 21110230-8.
[15] 戴金荣, 唐志红, 段于森, 张景贤. Si3N4/W高温共烧陶瓷的制备与研究[J]. 材料导报, 2023, 37(17): 22040171-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed