Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080049-9    https://doi.org/10.11896/cldb.23080049
  特种工程材料 |
基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型
孙涛, 王辉*, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌
中国人民解放军陆军勤务学院,重庆 401331
Retention Factor-based Stress-Strain Models of Austenitic Stainless-Steel Bolts at Elevated Temperatures
SUN Tao, WANG Hui*, ZHANG Lei, LIU Xiaoying, ZHAO Honggang, JIANG Wei, CHENG Xinlei, HE Xiaoyong
Army Logistics Academy of PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 6199KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不锈钢螺栓具有显著的耐久性、延性和耐火性,因此它们被广泛地应用于栓接的半刚性节点中。不锈钢螺栓如同其基材(不锈钢棒材)一样,在常温和高温下都表现出平滑的非线性特征,并且它们的应力-应变曲线中没有明确定义的屈服点。这种材料行为可以用不同的材料模型来表征,其中最常用的是Ramberg-Osgood公式或其修订版。然而,在现存不锈钢的材料模型中,相关力学参数的预测公式并不适用于经受冷作硬化和冷铸工艺的奥氏体和双相体不锈钢螺栓。因此,本工作基于先前研究中高温下不锈钢螺栓的折减因子建立它们的非线性高温材料模型。倘若在五个常温力学参数(杨氏模量、比例极限、屈服强度、极限强度和极限应变)已知的情况下,基于高温折减公式计算某一温度下的五个力学参数,进而评估试验应力-应变曲线与预测曲线之间的相关性。这种预测方法表明预测曲线与试验曲线具有明显的一致性,说明基于折减因子所建立的高温材料模型具有准确的预测精度。因此,联合不锈钢螺栓的高温折减公式,基于常温下的五个力学参数就可以准确预测其在某一温度下的应力-应变曲线。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙涛
王辉
张蕾
刘晓英
赵宏刚
蒋伟
成鑫磊
何小涌
关键词:  奥氏体不锈钢螺栓  高温  折减因子  应力-应变曲线  非线性本构模型    
Abstract: Stainless steel bolts are increasingly used in bolted semi-rigid connections due to their remarkable durability, ductility, and fire resistance. Stainless steel bolts, like their base material (stainless steel bars), exhibit smooth non-linear characteristics at both ambient and elevated temperatures, and they do not have a well-defined yield point in their stress-strain curves. This material behavior can be analytically represented by different material models, the most popular of which is based on the Ramberg-Osgood formulation or its extensions thereof. However, the available prediction formulas for the associated parameters in the material model of stainless steels are not necessarily applicable to austenitic and duplex stainless steel bolts subjected to work-hardening and cold-forging processes. Therefore, this paper proposes a nonlinear elevated tempe-rature constitutive model for stainless steel bolts based on their high-temperature reduction factors from previous studies. Supposing that five mechanical parameters (Young's modulus, proportional limit, yield strength, ultimate strength, and ultimate strain) are given at ambient temperature, and the reduction formulas derived for stainless steel bolts is used to obtain five mechanical parameters at a specified temperature and to evaluate the correlation of the tested stress-strain curve with the predicted one. This prediction methodology shows that the predicted curve is in clear agreement with the tested one, which is shown to be that the elevated temperature material model based on the reduction factor has consi-derable prediction accuracy. Thus, a stress-strain curve at a given temperature can be predicted based on five mechanical parameters at ambient temperature by combining the elevated temperature reduction equations for stainless steel bolts.
Key words:  austenitic stainless-steel bolts    elevated temperature    reduction factor    stress-strain curve    nonlinear constitutive model
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TU391  
  TG142.25  
基金资助: 重庆市教育委员会科学技术研究项目(KJZD-K202112901)
通讯作者:  *王辉,中国人民解放军陆军勤务学院讲师。2022年6月取得重庆大学土木工程专业博士学位,主要从事钢结构及其抗火性能的研究。近年来在专业领域SCI和EI期刊发表8篇论文,包括Engineering Structures、Fire Safety Journal、Journal of Materials in Civil Engineering、Thin-walled Structures、Journal of Construction Steel Research、《建筑结构学报》等。 wunghui@hotmail.com   
作者简介:  孙涛,中国人民解放军陆军勤务学院副教授。2012年天津大学结构工程专业博士毕业后,到中国人民解放军陆军勤务学院工作至今。目前主要从事工程抢修抢建、装配式建筑等方面的研究工作。近年来在EI期刊和核心期刊上发表30余篇论文,包括《建筑结构学报》《后勤工程学院学报》《空间结构》《建筑结构》《土木工程学报》《土木与环境工程学报》等。
引用本文:    
孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
SUN Tao, WANG Hui, ZHANG Lei, LIU Xiaoying, ZHAO Honggang, JIANG Wei, CHENG Xinlei, HE Xiaoyong. Retention Factor-based Stress-Strain Models of Austenitic Stainless-Steel Bolts at Elevated Temperatures. Materials Reports, 2024, 38(5): 23080049-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080049  或          https://www.mater-rep.com/CN/Y2024/V38/I5/23080049
1 Wang H. Behaviour of high strength steel double web angle connections assembled by austenitic bolts during and after fire. Ph. D. Thesis, Chongqing University, China, 2022(in Chinese).
王辉. 奥氏体螺栓装配高强双角钢节点的抗火性能. 博士学位论文, 重庆大学, 2022.
2 Elflah M, Theofanous M, Dirar S, et al. Journal of Constructional Steel Research, 2019, 152, 183.
3 Elflah M, Theofanous M, Dirar S. Journal of Constructional Steel Research, 2019, 152, 194.
4 Elflah M, Theofanous M, Dirar S, et al. Engineering Structures, 2019, 184, 158.
5 Fu W. Enhanced fire resistance of austenitic high-strength bolts A4L-80 and their connected beam-to-column joints with angles. Master's Thesis, Chongqing University, China, 2023(in Chinese).
付卫. A4L-80奥氏体高强螺栓及其连接角钢梁柱节点的抗火性能研究. 硕士学位论文, 重庆大学, 2023.
6 Song Y, Yam M C, Wang J. Engineering Structures, 2023, 275, 115337.
7 Wang H, Hu Y, Wang X Q, et al. Engineering Structures, 2021, 235, 111973.
8 Wang H, Nie S, Li J Y. Fire Safety Journal, 2022, 129, 103563.
9 Wang H, Nie S, Li J, et al. Journal of Materials in Civil Engineering, 2023, 35(5), 04023076.
10 Ramberg W, Osgood W R. Description of stress-strain curves by three parameters (Technical notes No. 902), National Advisory Committee for Aeronautics, Washington DC, USA, 1943.
11 Hill H N. Determination of stress-strain relations from the offset yield strength values (Technical note No. 927), National Advisory Committee for Aeronautics, Washington DC, USA,1944.
12 Holmquist J L. Drilling and Production Practice, 1939, 392-420.
13 Mirambell E, Real E. Journal of Constructional Steel Research, 2000, 54(4), 109.
14 Rasmussen K J R. Journal of Constructional Steel Research, 2003, 59(1), 47.
15 Gardner L, Ashraf M. Engineering Structures, 2006, 28(6), 926.
16 Quach W M, Teng J G, Chung K F. Journal of Structural Engineering, 2008, 134(9), 1518.
17 Hradil P, Talja A, Real E, et al. Thin-Walled Structures, 2013, 63, 63.
18 Quach, W M, Huang J F. Procedia Engineering, 2011,14, 288.
19 Arrayago I, Real E, Gardner L. Materials and Design, 2015, 87, 540.
20 EN 1993-1-4:2006. Eurocode 3, design of steel structures-part 1-4: general rules-supplementary rules for stainless steels, Brussels (Belgium): Comité Européen de Normalisation (CEN), 2006.
21 EN 1993-1-4:2006+A1:2015. Eurocode 3, design of steel structures-part 1-4: general rules-supplementary rules for stainless steels, Brussels (Belgium): Comité Européen de Normalisation (CEN), 2015.
22 SCI. Design manual for structural stainless steel (fourth ed., SCI Publication No. P413), The Steel Construction Institute (SCI), UK, 2017.
23 American Institute of Steel Construction(AISC). Specification for structural stainless steel buildings (ANSI/AISC 370), Chicago: AISC, 2021.
24 Rasmussen K J R, Hancock G J. Journal of Structural Engineering, 193, 119(8), 2368.
25 Real E, Arrayago I, Mirambell E, et al. Thin-Walled Structures, 2014, 83, 2.
26 Yun X, Wang Z, Gardner L. Journal of Structural Engineering, 2021, 147(6), 04021060.
27 Gardner L, Yun X. Construction and Building Materials, 2018, 189, 527.
28 Rokilan M, Mahendran M. Journal of Constructional Steel Research, 2020, 167, 105851.
29 Mäkeläinen P, Outinen J. Journal of Constructional Steel Research, 1998, 46 (1-3), 455.
30 Chen J, Young B. Engineering Structures, 2006, 28(2), 229.
31 Gardner L, Insausti A, Ng K T, et al. Journal of Constructional Steel Research, 2010, 66(5), 634.
32 Gardner L, Bu Y, Francis P, et al. Construction and Building Materials, 2016, 114, 977.
33 Huang Y, Young B. Journal of Constructional Steel Research, 2014, 92, 103.
34 Wang X Q, Tao Z, Song T Y, et al. Journal of Constructional Steel Research, 2014, 99, 129.
35 Tao Z, Wang X Q, Hassan M K, et al. Journal of Constructional Steel Research, 2019, 152, 296.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[3] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[4] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[5] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[6] 裴海华, 赵建伟, 郑家桢, 张贵才, 张菅, 蒋平. 改性纳米锂皂石强化高温泡沫调驱性能研究[J]. 材料导报, 2025, 39(2): 22110070-5.
[7] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[8] 严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
[9] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[10] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[11] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[12] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[13] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[14] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[15] 李力敏, 党莹樱, 黄锦阳, 刘鹏, 李沛, 鲁金涛, 袁勇. 长期时效对镍铁基高温合金组织和冲击韧性的影响[J]. 材料导报, 2024, 38(18): 23050036-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed