Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080113-6    https://doi.org/10.11896/cldb.23080113
  无机非金属及其复合材料 |
极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究
严鹏志, 范鹏贤*, 王宇, 邢文政
陆军工程大学国防工程学院,南京 210007
The Anti-impact Wave-absorbing Performance of Alumina Thin-walled Hollow Particles Under Extremely Adverse Environment
YAN Pengzhi, FAN Pengxian*, WANG Yu, XING Wenzheng
National Defense Engineering Academy, Army Engineering University of PLA, Nanjing 210007, China
下载:  全 文 ( PDF ) ( 5404KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 消波层消波效能的充分发挥是防护工程实现防护目的的重要一环。但在饱水与冰冻两种极端不利条件下,传统成层式防护结构使用的消波材料干散砂无法有效发挥消波效能,因此改善消波层在极端不利环境下的消波可靠性对于提升防护结构的战时生存能力具有重要意义。采用氧化铝薄壁空心球颗粒作为新型消波材料,利用分离式霍普金森杆测试了氧化铝薄壁空心球粒在冲击荷载作用下的消波效能并与标准砂进行了比较。试验结果表明,在饱水与冰冻两种极端不利工况下,氧化铝薄壁空心球粒较传统消波材料均具有明显的消波优势。氧化铝薄壁空心球粒能够反射更多的入射能量,进而减少耦合入材料内部的能量;同时,对于耦合入材料内部的能量,其耗散能力也强于标准砂。氧化铝薄壁空心球粒在饱水和冰冻条件下的高效消波能力主要得益于其在荷载作用下能够大量破碎,释放壳体内部气相,增加了介质的可压缩性。在动态应力-应变曲线上直观表现为曲线更加平缓,压缩模量、峰值应力更小但峰值应变更大。而大粒径的氧化铝薄壁空心球粒能够进一步提高材料在极端不利工况下的消波效能,提高工程应用中的效费比。本工作可为防护工程水害与冻害问题提供低成本、高可靠性的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严鹏志
范鹏贤
王宇
邢文政
关键词:  氧化铝薄壁空心球粒  能量分析  颗粒破碎  动态应力-应变曲线    
Abstract: It is an important part of protective engineering to give full play to the wave-absorbing efficiency of the wave-absorbing layer. However, dry loose sand, a traditional wave-absorbing material used in the layered protective structure, cannot effectively exert wave-absorbing efficiency under the two extremely unfavorable conditions of saturated water and freezing. Improving the wave-absorbing reliability of the wave-absorbing layer in the extremely unfavorable environment is of great significance for the survivability of the protective structure in wartime. The wave-absor-bing efficiency of alumina thin-walled hollow particles under impact load was tested by split Hopkinson bar and compared with that of standard sand. The test results show that the alumina thin-walled hollow particles have obvious advantages over the traditional wave-absorbing materials both in the condition of saturated water and in the condition of freezing. Alumina thin-walled hollow particles can reflect more incident energy, thereby reducing the energy coupled into the material. At the same time, for the energy coupled into the material, its dissipation capacity is also stronger than that of standard sand. The efficient wave-absorbing ability of alumina thin-walled hollow particles under saturated water and freezing conditions is mainly due to the broken of a large amount of hollow particles under impact load, which releases the internal gas phase of the shell and increases the compressibility of the medium. Compared with dry loose sand, the dynamic stress-strain curve of the alumina thin-walled hollow particles is smoother, and its compression modulus and the peak stress are smaller, but its peak strain is greater. The large size of alumina thin-walled hollow particles can further improve the wave-absorbing efficiency of the material under extremely unfavorable conditions, and improve the efficiency and cost ratio in engineering applications. The work provides a low-cost and high-reliability solution to solve the problem of water damage and freezing damage in protection engineering.
Key words:  alumina thin-walled hollow particles    energy analysis    particle breaking    dynamic stress-strain curve
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  O382.1  
基金资助: 国家自然科学基金(51979280)
通讯作者:  * 范鹏贤,陆军工程大学爆炸冲击防灾减灾国家重点实验室副教授、博士研究生导师,国土地下空间高效防护研究所副所长。2004年大连理工大学土木工程专业本科毕业,2007年解放军理工大学防灾减灾工程及防护工程专业硕士毕业,2011年解放军理工大学防灾减灾工程及防护工程专业博士毕业。目前主要从事岩石力学、地下工程安全与防护等方面的研究工作。发表论文100余篇,包括Rock Mecha-nics and Rock Engineering、Canadian Geotechnical Journal、Thin-walled Structures、《岩石力学与工程学报》等。fan-px@139.com   
作者简介:  严鹏志,2021年6月于金陵科技学院获得工学学士学位。现为陆军工程大学国防工程学院硕士研究生,在范鹏贤副教授的指导下进行研究。目前主要研究领域为高效防护材料与技术。
引用本文:    
严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
YAN Pengzhi, FAN Pengxian, WANG Yu, XING Wenzheng. The Anti-impact Wave-absorbing Performance of Alumina Thin-walled Hollow Particles Under Extremely Adverse Environment. Materials Reports, 2024, 38(23): 23080113-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080113  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080113
1 Zhao K. The Attenuation and dispersion effects on explosive wave of layered protective engineering. Ph. D. Thesis, University of Science and Technology of China, China, 2007 (in Chinese).
赵凯. 分层防护层对爆炸波的衰减和弥散作用研究. 博士学位论文, 中国科学技术大学, 2007.
2 Zhou H, Ren H Q, Wu X Y, et al. Explosion and Shock Waves, 2022, 42(11), 3 (in Chinese).
周辉, 任辉启, 吴祥云, 等. 爆炸与冲击, 2022, 42(11), 3.
3 Liu X, Xu H F, Fan P X, et al. Rock and Soil Mechanics, 2021, 42(8), 2099 (in Chinese).
刘鑫, 许宏发, 范鹏贤, 等. 岩土力学, 2021, 42(8), 2099.
4 Li S, Xiong Z M, Fan P X, et al. Applied Sciences-Basel, 2022, 12(18), 9140.
5 Huang X L, Qi S W, Xia K W, et al. Journal of Applied Geophysics, 2016, 130, 1.
6 Liu X, Xu H F, Fan P X, et al. KSCE Journal of Civil Engineering, 2023, 27, 3097.
7 Wang L J, Fan L F, Du X L. Rock Mechanics and Rock Engineering, 2022, 55(7), 3807.
8 Yu B Y, Chen Z Q, Dai Y W, et al. Journal of Mining and Safety Engineering, 2018, 35(1), 197 (in Chinese).
郁邦永, 陈占清, 戴玉伟, 等. 采矿与安全工程学报, 2018, 35(1), 197.
9 Qi Y, Huang J J, Chen M X. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2), 252 (in Chinese).
祁原, 黄俊杰, 陈明祥. 力学学报, 2015, 47(2), 252.
10 Krivtsov V A. Journal of Applied Mechanics and Technical Physics, 1976, 15(4). 576.
11 Lyakhov G M, Okhitin V N, Chistov A G. Journal of Applied Mechanics and Technical Physics, 1974, 13(3), 390.
12 Qian Q H, Wang M Y. Shock explosion effect in rock and soil, Beijing National Defense Industry Publishing House, China, 2010, pp.247 (in Chinese).
钱七虎, 王明洋. 岩土中的冲击爆炸效应, 北京国防工业出版社, 2010, pp.247.
13 Li S, Xiong Z M, Fan P X, et al. Geofluids, 2022, 169, 1.
14 Liu G M, Zhang B, Wang L, et al. Earth Science, 2022, 21(4), 1.
15 Fu T T, Zhu Z W, Cao C X. Acta Mechanica, 2019, 230(5), 1869.
16 Barlas N A, Kravets V G, Lyakhov G M. Journal of Applied Mechanics and Technical Physics, 1979, 20(1), 113.
17 Huang J Y, Lu L, Fan D, et al. Scripta Materialia, 2016, 111, 114.
18 Ye Z B. New composite protective materials of the dynamic static mechanical properties and engineering application. Ph. D. Thesis, University of Science and Technology of China, China, 2018 (in Chinese).
叶中豹. 新型复合防护材料的动静态力学特性和工程应用研究. 博士学位论文, 中国科学技术大学, 2018.
19 Ye Z B, Li Y C, Zhao K, et al. Journal of Experimental Mechanics, 2017, 32(3), 377 (in Chinese).
叶中豹, 李永池, 赵凯, 等. 实验力学, 2017, 32(3), 377.
20 Sun X W, Li Y C, Ye Z B, et al. Explosion and Shock Waves, 2017, 37(4), 643 (in Chinese).
孙晓旺, 李永池, 叶中豹, 等. 爆炸与冲击, 2017, 37(4), 643.
21 Yan P Z, Li S, Fan P X, et al. Journal of Army Engineering University of PLA, 2023, 2(3), 41 (in Chinese).
严鹏志, 李胜, 范鹏贤, 等. 陆军工程大学学报, 2023, 2(3), 41.
22 Gray G, Classic Split-Hopkinson Pressure Bar Testing, American Society for Metals, America, 2000, pp.462.
23 Zhang D, Zhu Z W, Liu Z J. Shock and Vibration, 2016, 5, 1.
24 Ma Q Y, Ma D D, Yuan P, et al. Advances in Materials Science and Engineering, 2018, 34(2), 1.
25 Ma L J, Li Z, Wang M Y, et al. Powder Technology, DOI:10.1016/j.powtec.2018.10.037.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed