Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21030043-7    https://doi.org/10.11896/cldb.21030043
  高分子与聚合物基复合材料 |
碳酸酐酶在地质聚合物微球表面的固定及活性表征
昌姗, 崔学民*, 贺艳, 苏俏俏, 窦怀远
广西大学化学化工学院,南宁530004
Immobilization and Activity Characterization of Carbonic Anhydrase on Geopolymer Microspheres
CHANG Shan, CUI Xuemin*, HE Yan, SU Qiaoqiao, DOU Huaiyuan
College of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 5644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳酸酐酶(Carbonic anhydrase, CA)是一种广泛存在于各种真核生物以及原核微生物中的含锌金属酶,可以高速催化CO2的可逆水合反应,但其成本昂贵,且易失活、难回收,因此实际应用受到了限制。酶的固定化技术不仅可以使酶像固体催化剂一样可回收再利用,还能提高酶的稳定性,保持其高催化性能。固定化酶具有一定的机械强度和形状,可置于反应床或连续反应器中生产,且反应过程可控。本研究以绿色环保、来源广泛的矿渣为原料,以NaOH为碱激发剂,通过悬浮分散固化法制备了地质聚合物微球并将其作为载体;以戊二醛为交联剂,使用吸附-交联法成功地将碳酸酐酶(Carbonic anhydrase, CA)固定在地质聚合物微球上。通过酶活回收率和相对酶活来评价碳酸酐酶的固定化效率,同时利用不同的表征手段对载体与固定化酶的微观形貌、结构变化等进行了对比分析。实验结果表明,碳酸酐酶在地质聚合物微球上的最佳固定化条件为pH值8.0、反应温度30 ℃、固定化时间2 h、载体用量100 mg、交联剂浓度0.2%(质量分数)、交联反应时间1 h。在此条件下的固定化碳酸酐酶的酶活回收率最高可达55.9%。固定化反应之后,碳酸酐酶的最佳反应温度由25 ℃提升至30 ℃;最佳反应pH值由7.5提升至8.0。相较于游离酶而言,固定化碳酸酐酶在4 ℃和25 ℃下的贮存稳定性都有所提高,在连续操作使用五个循环后仍能保持46.1%的相对酶活。游离碳酸酐酶的米氏常数(Km)、酶促反应最大速度(Vmax)分别为7.63 mmol·L-1和1.60 mmol·L-1·min-1,固定化碳酸酐酶的KmVmax则分别为21.55 mmol·L-1和5.05 mmol·L-1·min-1,二者的总活度(Kcat/Km)分别为61.50 mol-1·L·s-1和12.36 mol-1·L·s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
昌姗
崔学民
贺艳
苏俏俏
窦怀远
关键词:  地质聚合物  碳酸酐酶  酶的固定化技术  微球    
Abstract: The present study entails the immobilization of carbonic anhydrase (CA) on geopolymer microspheres (GMS) and the enzymatic properties of free and immobilized enzyme. Carbonic anhydrase, a zinc-containing metalloenzyme which can catalyze the hydration of CO2 into bicarbonate. It is ubiquitous in animals and plants and has at least five distinct categories. Featured like other enzymes, it has the nature of high catalytic efficiency, excellent specificity and mild reaction conditions. However, the practical applications of CA are confronted with the challenge of the intrinsic fragile nature of enzyme in harsh environment, which makes them vulnerable to detrimental structural changes in industrial conditions, leading to inevitably denaturation, inactivation, poor stability, and laborious recycling. The enzyme immobilization technology overcomes the above problems. The immobilization technology is defined as the enzyme can be reused and recycled while still maintainlng the catalytic capability when it was confined or bound in a certain area by solid materials. The immobilized enzyme integrates the characteristics of mild reaction conditions, high efficiency and specificity, and makes up for the deficiency of free enzyme owing to its superiority in enhancing stability and overcoming the obstacle of enzyme recycling. In this research, geopolymer, a kind of green inorganic gel material, was used as carrier to immobilize carbonic anhydrase with NaOH as alkali activator and glutaraldehyde (GA) used as cross-linking agent by suspension dispersion solidification method. The immobilization efficiency of carbonic anhydrase was evaluated by enzyme activity recovery and relative enzyme activity. At the same time, the micro-morphology and structural changes of the carrier and the immobilized enzyme were compared and analyzed by different characterization methods. The optimal immobilization conditions were found out to be pH value, 8.0; temperature, 30 ℃; immobilization time, 2 h; GMS dose, 100 mg; GA concentration, 0.2wt%; cross-linking time, 1 h. Under these conditions, the highest recovery of activity of immobilized carbonic anhydrase can reach 55.9%.Compared with free CA, the optimum pH of the immobilized enzyme increased from 7.5 to 8.0 and the optimum temperature increased from 25 ℃ to 30 ℃. The storage stability of immobilized CA was better than its free counterpart at the circumstance of 4 ℃ and 25 ℃, respectively, and the relative activity of the immobilized enzyme remained 46.1% after 5 cycles of continuous operation. The Michaelis constant (Km) and maximum reaction rate in enzymatic reaction (Vmax) of free CA were determined to be 7.63 mmol·L-1 and 1.60 mmol·L-1·min-1, while that of the immobilized CA were 21.55 mmol·L-1 and 5.05 mmol·L-1·min-1, respectively. The overall activity (Kcat/Km) of them were 61.50 mol-1·L·s-1 and 12.36 mol-1·L·s-1, respectively.
Key words:  geopolymer    carbonic anhydrase    immobilization of enzyme    microsphere
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TB3  
基金资助: 国家自然科学基金(51772055)
通讯作者:  *cui-xm@mail.tsinghua.edu.cn,崔学民,工学博士,博士后,研究员,博士研究生导师。2005年9月,清华大学材料系博士后出站后到广西大学化学化工学院工作,历任学术骨干、院长助理及副院长等职。在国内外学术期刊上发表论文200余篇,申请国家发明专利40余项,其中授权20多项。目前团队主要研究方向为地质聚合物材料制备、分子结构表征、聚合反应机理以及物理、化学性能的研究与应用;微孔与介孔材料、新型无机膜材料与水处理技术研究;工程防护材料、无机涂料、建筑节能与装饰材料的开发与应用;固体废弃物综合利用及绿色建筑材料产品开发。已承担国家自然科学基金6项,国家“863”子课题、广西自然科学基金重点项目、广东省产学研重大专项子课题等多项国家级及省部级项目。获得中国电子学会电子信息科学技术奖一等奖1项。   
作者简介:  昌姗,广西大学化学化工学院2018级硕士研究生,专业为化学工程与技术,导师为崔学民研究员。目前研究方向为碳酸酐酶在地质聚合物微球表面的固定化及其催化性能研究。
引用本文:    
昌姗, 崔学民, 贺艳, 苏俏俏, 窦怀远. 碳酸酐酶在地质聚合物微球表面的固定及活性表征[J]. 材料导报, 2023, 37(3): 21030043-7.
CHANG Shan, CUI Xuemin, HE Yan, SU Qiaoqiao, DOU Huaiyuan. Immobilization and Activity Characterization of Carbonic Anhydrase on Geopolymer Microspheres. Materials Reports, 2023, 37(3): 21030043-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030043  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21030043
1 Claudiu S, Clemente C. Metabolites, 2017, 7(4), 56.
2 Moon H, Kim S, Jo B H, et al. Journal of CO2 Utilization, 2020, 39, 101172.
3 Luca V D, Vullo D, Scozzafava A, et al. Bioorganic & Medicinal Chemistry, 2013, 21(6), 1465.
4 Tian X Y, Deng J Q, Zhang C. China Petroleum and Chemical Standard and Quality, 2019, 39(1),178.
5 Cui X M, Tang Q, Li C M, et al. Rare Metal Materials and Engineering, 2015, 44(S1), 600(in Chinese).
崔学民,唐青,李纯民,等.稀有金属材料与工程,2015,44(S1),600.
6 Yang S J. Study on preparation and adsorption properties of metakaolin-based geopolymer microspheres. Master’s Thesis, Guangxi University, China, 2019(in Chinese).
杨思杰. 偏高岭土基地质聚合物微球的制备及其吸附性能研究.硕士学位论文,广西大学,2019.
7 Chen M L. Study and application of surface modified slag-based geopolymer microspheres adsorbents. Master’s Thesis, Guangxi University, China, 2019(in Chinese).
谌美伶. 矿渣基地质聚合物微球吸附剂表面改性的研究与应用.硕士学位论文,广西大学,2019.
8 Bradford M M. Analytical Biochemistry, 1976, 72(1-2), 248.
9 Liang S, Wu X L, Zong M H, et al. Chemical Engineering Journal, 2020, 398.
10 Li J. Experimental study on catalytic absorption of CO2 with the immobilized carbonic anhydrase. Master’s Thesis, Southeast University, China, 2017(in Chinese).am
李娟. 固定化碳酸酐酶催化吸收CO2试验研究.硕士学位论文,东南大学,2017.
11 Tang Q. Study on preparation of spherical geopolymer using suspension solidification and its application. Ph.D. Thesis, Guangxi University, China, 2018(in Chinese).
唐青. 悬浮固化法制备球形地质聚合物的研究及应用.博士学位论文,广西大学,2018.
12 Arica M Y, Bayramoglu G. Journal of Molecular Catalysis B: Enzymatic, 2004, 27(4-6), 255.
13 Wanjari S, Prabhu C, Yadav R, et al. Process Biochemistry, 2011, 46(4), 1010.
14 Vinoba M, Bhagiyalakshmi M, Jeong S K, et al. Journal of Molecular Catalysis B: Enzymatic, 2012, 75, 60.
15 Vinoba M, Lim K S, Lee S H, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2011, 27(10), 6227.
16 Bond G M, Stringer J, Brandvold D K, et al. Energy & Fuels, 2001, 15(2), 309.
17 Merle G, Fradette S, Madore E, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(23), 6915.
18 Bhattacharya S, Schiavone M, Chakrabarti S. Biotechnology Application Biochemistry, 2003, 38(2), 111.
19 Wei L N. Immobilization of carbonic anhydrase on the surface of polymer microporous membrane. Master’s Thesis, Beijing Institute of Technology, China, 2016(in Chinese).
魏利娜. 碳酸酐酶在聚合物微孔膜表面的固定化.硕士学位论文,北京理工大学,2016.
20 Ekrem O. Energy & Fuels, 2009, 23, 5725.
21 Zhang Y T. Research on removing low concentration CO2 by membrane reactor filled with nanocomposite hydrogel immobilized enzyme. Ph. D. Thesis, Zhejiang University, China, 2009(in Chinese).
张亚涛. 纳米复合凝胶固定化酶膜反应器去除低浓度CO2的研究.博士学位论文,浙江大学,2009.
22 Gao W F. Study on the immobilization and properties of carbonic anhydrase. Master’s Thesis, Zhejiang University of Technology, China, 2010(in Chinese).
高伟芳. 碳酸酐酶的固定化及其酶学性质研究.硕士学位论文,浙江工业大学,2010.
23 Zhu H. The preparation and high temperature performance research of alkali slag base geopolymer materials. Master’s Thesis, Guangxi University, China, 2016(in Chinese).
祝贺. 碱矿渣基地质聚合物的制备及其高温性能研究.硕士学位论文,广西大学,2016.
24 Li W. Effect of water on microstructure and properties of alkali-activated geopolymers. Master’s Thesis, Guangxi University, China, 2018(in Chinese).
李维. 水对碱激发地质聚合物微观结构及性能的影响.硕士学位论文,广西大学,2018.
25 Yashi A, Sahin F, Demirel G, et al. International Journal of Biological Macromolecules, 2005, 36(4), 253.
26 Rees C A, Provis J L, Lukey G C, et al. Langmuir: the ACS Journal of Surfaces and Colloids, 2007, 17(23), 9076.
27 Forsyth C, Yip T W S, Patwardhan S V. Chemical Communications, 2013, 49(31), 3191.
28 Fei X Y. Immobilization of carbonic anhydrase and the performance in CO2 capture. Ph.D. Thesis, Dalian University of Technology, China, 2018(in Chinese).
费潇瑶. 碳酸酐酶的固定化及其CO2的捕集性能.博士学位论文,大连理工大学,2018.
[1] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[2] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[3] 张定军, 韩筱, 朱金龙, 杨世元, 赵文锦. 反相微乳液聚合法制备的(AA-AM-C18DMAAC-St)四元共聚感温凝胶微球[J]. 材料导报, 2022, 36(5): 20120204-6.
[4] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[5] 徐海燕, 杨雪雷, 王爱国, 朱颖灿, 刘开伟, 黄濛, 王星尧. 地质聚合物基防护涂料及其性能提升技术的研究进展[J]. 材料导报, 2022, 36(19): 21110045-7.
[6] 宗丹, 盛扬, 李新庆, 潘艳, 孙一新, 邓林红, Mark Bradley, 张嵘. 以聚醚聚酯丙烯酸酯为交联剂的pH响应性水凝胶纳米微球的制备及药物释放研究[J]. 材料导报, 2022, 36(14): 21020090-7.
[7] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[8] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[9] 孙红娟, 曾丽, 彭同江. 粉煤灰高值化利用研究现状与进展[J]. 材料导报, 2021, 35(3): 3010-3015.
[10] 鲍艳, 丁颖, 唐培, 康巧玲. 水性醇酸树脂/中空TiO2微球复合涂层的性能[J]. 材料导报, 2021, 35(18): 18200-18204.
[11] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[12] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[13] 刘畅, 丁博, 杨贤峰, 叶瑞雪, 季益龙, 代兵, 吕辉鸿. 新型FeWO4@ZnS异质结微球制备及其光催化降解四环素和亚甲基蓝研究[J]. 材料导报, 2020, 34(Z2): 78-83.
[14] 张硕. 利用纳米碳酸钙为模板制备二氧化硅空心微球[J]. 材料导报, 2020, 34(Z2): 91-94.
[15] 何祖宇, 谢江辉, 李普旺, 屈云慧, 杨子明, 于丽娟, 王超, 刘运浩, 姚全胜, 周闯. 两亲性壳聚糖自组装纳米微球的制备及抗真菌性能研究[J]. 材料导报, 2020, 34(Z2): 501-506.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed