Modifying Carbon Microspheres by Grafting Polyethylene Glycol Molecular Brushes and Its Electrochemical Performance
ZHAO Lei1,2, PENG Yuanyou1, LI Yuan1, ZHANG Qianqian1, RAN Fen1,*
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Mechanical Engineering, Longdong University, Qingyang 745000, Gansu, China
Abstract: Carbon material is one of the most important electrode materials of electrochemical capacitor; however, it is always a challenge for carbon materials to be wetted by aqueous electrolyte with polarity, due to the intrinsic non-polarity of carbon materials surface. Herein, polyethylene glycol (PEG) molecular brushes with excellent hydrophilicity were grafted on carbon microspheres (Csa) surface through polymer grafting to improve the wettability of the Csa as electrode active materials toward aqueous electrolyte. The dispersibility test of electrode materials in 6 mol/L KOH electrolyte and static water contact angels showed that the PEG molecular brushes modified Csa (P-Csa) was better to be wetted by aqueous electrolyte than the unmodified Csa. Electrochemical tests, such as cyclic voltammograms, galvanostatic charge-discharge, electrochemical impedance spectroscopy, demonstrated that the specific capacity of P-Csa electrode material was nearly 60% higher than that of unmodified Csa electrode material at current density of 0.625 A/g, and the P-Csa electrode material also exhibited excellent rate performance, low intrinsic impedance (0.94 Ω) and high cycle stability (73.29% of the initial specific capacity after 10 000 cycles at current density of 1.25 A/g). It is worth pointing out that the modification of PEG molecular brushes for Csa electrode material does not introduce faradic pseudocapacitance, which mainly improves the wettability of electrode materials surface toward aqueous electrolyte.
1 Simon P, Gogosti Y. Nature Materials, 2008, 7(11), 845. 2 Burke A. Journal of Power Sources, 2000, 91(1), 37. 3 Wang Z, Zhu M, Pei Z, et al. Materials Science & Engineering R, 2020, 139, 100520. 4 Huang X Y, Wang L, Wang H C, et al. Small, 2020, 16(15), 1902827. 5 Zhang L L, Zhao X S. Chemical Society Reviews, 2009, 38(9), 2520. 6 Zhai Y, Dou Y, Zhao D, et al. Advanced Materials, 2011, 23(42), 4828. 7 Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014, 7(5), 1597. 8 Yu M M, Ji X W, Ran F. Carbohydrate Polymers, 2021, 255, 117346. 9 Gonzalez A, Goikolea E, Andoni Barrena J, et al. Renewable & Sustai-nable Energy Reviews, 2016, 58, 1189. 10 Choi C, Lee J A, Choi A Y,et al. Advanced Materials, 2014, 26(13), 2059. 11 Islam M S, Deng Y, Tong L, et al. Carbon, 2016, 96, 701. 12 Cao X, Shi Y, Shi W, et al. Small, 2011, 7(22), 3163. 13 Zhang L L, Zhou R, Zhao X S. Journal Materials Chemistry, 2010, 20(29), 5983. 14 Chen D, Feng H, Li J. Chemical Reviews, 2012, 112(11), 6027. 15 Lee J, Kim J, Hyeon T. Advanced Materials, 2006, 18(16), 2073. 16 Wu D C, Xu F, Sun B, et al. Chemical Reviews, 2012, 112(7), 3959. 17 Li W C, Nong G Z, Lu A H, et al. Journal of Porous Materials, 2011, 18(1), 23. 18 Liang C D, Hong K L, Guiochon G A, et al. AngewandteChemie International Edition, 2004, 43(43), 5785. 19 Xu J, Wang A, Zhang T. Carbon, 2012, 50(5), 1807. 20 Zhao J, Lai H, Lyu Z, et al. Advanced Materials, 2015, 27(23), 3541. 21 Wang D W, Li F, Liu M, et al. Angewandte Chemie International Edition, 2008, 47, 373. 22 Zhao J, Jiang Y, Fan H, et al. Advanced Materials, 2017, 29(11), 1604. 23 Yan K, Kong L B, Dai Y H, et al. Journal of Materials Chemistry A, 2015, 3(45), 22781. 24 Hao G P, Zhang Q, Sin M, et al. Chemistry of Materials, 2016, 28, 8715. 25 Wang Z, Zhang W, Tan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 16087. 26 Deng Y F, Xie Y, Zou K X, et al. Journal Materials Chemistry A, 2016, 4, 1144. 27 Lang J W, Yan X B, Liu W M, et al. Journal of Power Sources, 2012, 204, 220. 28 Jang I Y, Muramatsu H, Park K C, et al. Electrochemistry Communications, 2009, 11(4), 719. 29 Tan Y T, Ran F, Kong L B, et al. Synthetic Metals, 2012, 162(1-2), 114. 30 Lang J W, Kong L B, Liu M, et al. Journal of the Electrochemical Society, 2010, 157(12), A1341. 31 Tan Y T, Kong L B, Kang L, et al. Materials Reports A: Review Paper, 2018, 32(1), 47(in Chinese). 谭永涛, 孔令斌, 康龙, 等.材料导报:综述篇,2018, 32(1), 47. 32 Zhang J, Yi X B, Ju W, et al. Electrochemistry Communications, 2017, 74, 19. 33 Zhao B, Hu H, Yu A P, et al. Journal of the American Chemical Society, 2005, 127, 8197. 34 Lin T Q, Chen I W, Liu F X, et al. Science, 2015, 350(6267), 1508. 35 Fleischmann S, Mitchell J B, Wang R, et al. Chemical Reviews, 2020, 120(14), 6738. 36 Simon P, Gogotsi Y, Dunn B. Science, 2014, 343(6176), 1210.