Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21080112-7    https://doi.org/10.11896/cldb.21080112
  无机非金属及其复合材料 |
聚乙二醇分子刷接枝改性碳微球及其电化学性能
赵磊1,2, 彭元佑1, 李媛1, 张倩倩1, 冉奋1,*
1 兰州理工大学材料科学与工程学院,省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 陇东学院机械工程学院,甘肃 庆阳 745000
Modifying Carbon Microspheres by Grafting Polyethylene Glycol Molecular Brushes and Its Electrochemical Performance
ZHAO Lei1,2, PENG Yuanyou1, LI Yuan1, ZHANG Qianqian1, RAN Fen1,*
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Mechanical Engineering, Longdong University, Qingyang 745000, Gansu, China
下载:  全 文 ( PDF ) ( 6724KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳材料是水系电化学电容器最重要的电极材料之一,但是它的本征非极性表面被极性的水系电解质浸润一直存在挑战。本工作采用聚合物接枝法将具有良好亲水性的聚乙二醇(PEG)分子刷接枝在碳微球的表面,可改善碳微球作为电极材料对水系电解质的浸润性。通过电极材料在6 mol/L KOH电解质中的分散性和静态水接触角测试表明,PEG分子刷改性的碳微球(P-Csa)电极材料展现更良好的水系电解质浸润性。循环伏安、恒流充放电法和交流阻抗等电化学测试显示,在电流密度为0.625 A/g 时,P-Csa电极材料的比容量比未改性碳微球电极材料提高了60%;该电极材料展现出良好的倍率性能、低的本征阻抗(0.94 Ω)和高的循环稳定性(在1.25 A/g电流密度下,10 000次循环后保持初始比容量的73.29%)。值得指出的是,PEG分子刷改性碳微球电极材料并未引入法拉第赝电容,主要改善电极材料表面的水系电解质浸润性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵磊
彭元佑
李媛
张倩倩
冉奋
关键词:  碳微球  分子刷  聚乙二醇  聚合物接枝  电极材料    
Abstract: Carbon material is one of the most important electrode materials of electrochemical capacitor; however, it is always a challenge for carbon materials to be wetted by aqueous electrolyte with polarity, due to the intrinsic non-polarity of carbon materials surface. Herein, polyethylene glycol (PEG) molecular brushes with excellent hydrophilicity were grafted on carbon microspheres (Csa) surface through polymer grafting to improve the wettability of the Csa as electrode active materials toward aqueous electrolyte. The dispersibility test of electrode materials in 6 mol/L KOH electrolyte and static water contact angels showed that the PEG molecular brushes modified Csa (P-Csa) was better to be wetted by aqueous electrolyte than the unmodified Csa. Electrochemical tests, such as cyclic voltammograms, galvanostatic charge-discharge, electrochemical impedance spectroscopy, demonstrated that the specific capacity of P-Csa electrode material was nearly 60% higher than that of unmodified Csa electrode material at current density of 0.625 A/g, and the P-Csa electrode material also exhibited excellent rate performance, low intrinsic impedance (0.94 Ω) and high cycle stability (73.29% of the initial specific capacity after 10 000 cycles at current density of 1.25 A/g). It is worth pointing out that the modification of PEG molecular brushes for Csa electrode material does not introduce faradic pseudocapacitance, which mainly improves the wettability of electrode materials surface toward aqueous electrolyte.
Key words:  carbon microspheres    molecular brush    polyethylene glycol    polymer grafting    electrode material
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TB324  
  TQ316.3  
基金资助: 国家自然科学基金(51763014;52073133);兰州理工大学红柳杰出青年学者项目;甘肃省青年科技基金计划(20JR10RA137)
作者简介:  赵磊,博士研究生,2010年7月本科毕业于泰山学院高分子材料与工程专业,2013年7月硕士毕业于兰州理工大学材料加工工程专业,师承冉奋教授,主要从事超级电容器电极材料的研究。
冉奋,教授/博士研究生导师, 甘肃省"飞天学者"青年学者。四川大学高分子材料工程国家重点实验室博士, 新加坡国立大学访问研究员、美国加州大学圣克鲁斯分校访问学者,美国加州大学圣芭芭拉分校学习双语教育教学法。担任中国生物材料学会血液净化材料分会委员,目前就职于省部共建有色金属先进加工与再利用国家重点实验室,研究方向包括活性可控聚合和大分子设计、新型能源材料和生物医用高分子材料。主编或编写专著4部,公开发表学术论文100余篇。
引用本文:    
赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
ZHAO Lei, PENG Yuanyou, LI Yuan, ZHANG Qianqian, RAN Fen. Modifying Carbon Microspheres by Grafting Polyethylene Glycol Molecular Brushes and Its Electrochemical Performance. Materials Reports, 2022, 36(21): 21080112-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080112  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21080112
1 Simon P, Gogosti Y. Nature Materials, 2008, 7(11), 845.
2 Burke A. Journal of Power Sources, 2000, 91(1), 37.
3 Wang Z, Zhu M, Pei Z, et al. Materials Science & Engineering R, 2020, 139, 100520.
4 Huang X Y, Wang L, Wang H C, et al. Small, 2020, 16(15), 1902827.
5 Zhang L L, Zhao X S. Chemical Society Reviews, 2009, 38(9), 2520.
6 Zhai Y, Dou Y, Zhao D, et al. Advanced Materials, 2011, 23(42), 4828.
7 Augustyn V, Simon P, Dunn B. Energy & Environmental Science, 2014, 7(5), 1597.
8 Yu M M, Ji X W, Ran F. Carbohydrate Polymers, 2021, 255, 117346.
9 Gonzalez A, Goikolea E, Andoni Barrena J, et al. Renewable & Sustai-nable Energy Reviews, 2016, 58, 1189.
10 Choi C, Lee J A, Choi A Y,et al. Advanced Materials, 2014, 26(13), 2059.
11 Islam M S, Deng Y, Tong L, et al. Carbon, 2016, 96, 701.
12 Cao X, Shi Y, Shi W, et al. Small, 2011, 7(22), 3163.
13 Zhang L L, Zhou R, Zhao X S. Journal Materials Chemistry, 2010, 20(29), 5983.
14 Chen D, Feng H, Li J. Chemical Reviews, 2012, 112(11), 6027.
15 Lee J, Kim J, Hyeon T. Advanced Materials, 2006, 18(16), 2073.
16 Wu D C, Xu F, Sun B, et al. Chemical Reviews, 2012, 112(7), 3959.
17 Li W C, Nong G Z, Lu A H, et al. Journal of Porous Materials, 2011, 18(1), 23.
18 Liang C D, Hong K L, Guiochon G A, et al. Angewandte Chemie International Edition, 2004, 43(43), 5785.
19 Xu J, Wang A, Zhang T. Carbon, 2012, 50(5), 1807.
20 Zhao J, Lai H, Lyu Z, et al. Advanced Materials, 2015, 27(23), 3541.
21 Wang D W, Li F, Liu M, et al. Angewandte Chemie International Edition, 2008, 47, 373.
22 Zhao J, Jiang Y, Fan H, et al. Advanced Materials, 2017, 29(11), 1604.
23 Yan K, Kong L B, Dai Y H, et al. Journal of Materials Chemistry A, 2015, 3(45), 22781.
24 Hao G P, Zhang Q, Sin M, et al. Chemistry of Materials, 2016, 28, 8715.
25 Wang Z, Zhang W, Tan Y, et al. ACS Applied Materials & Interfaces, 2019, 11(17), 16087.
26 Deng Y F, Xie Y, Zou K X, et al. Journal Materials Chemistry A, 2016, 4, 1144.
27 Lang J W, Yan X B, Liu W M, et al. Journal of Power Sources, 2012, 204, 220.
28 Jang I Y, Muramatsu H, Park K C, et al. Electrochemistry Communications, 2009, 11(4), 719.
29 Tan Y T, Ran F, Kong L B, et al. Synthetic Metals, 2012, 162(1-2), 114.
30 Lang J W, Kong L B, Liu M, et al. Journal of the Electrochemical Society, 2010, 157(12), A1341.
31 Tan Y T, Kong L B, Kang L, et al. Materials Reports A: Review Paper, 2018, 32(1), 47(in Chinese).
谭永涛, 孔令斌, 康龙, 等.材料导报:综述篇,2018, 32(1), 47.
32 Zhang J, Yi X B, Ju W, et al. Electrochemistry Communications, 2017, 74, 19.
33 Zhao B, Hu H, Yu A P, et al. Journal of the American Chemical Society, 2005, 127, 8197.
34 Lin T Q, Chen I W, Liu F X, et al. Science, 2015, 350(6267), 1508.
35 Fleischmann S, Mitchell J B, Wang R, et al. Chemical Reviews, 2020, 120(14), 6738.
36 Simon P, Gogotsi Y, Dunn B. Science, 2014, 343(6176), 1210.
[1] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[2] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[3] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[4] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[5] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[6] 胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
[7] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[8] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[9] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[10] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[11] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[12] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[13] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[14] 吴亚鸽, 冉奋. 纤维素基多孔碳膜的制备及其电化学性能研究[J]. 《材料导报》期刊社, 2018, 32(5): 715-718.
[15] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed