Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4089-4099    https://doi.org/10.11896/j.issn.1005-023X.2018.23.010
  无机非金属及其复合材料 |
改性吸附剂脱除工业废气中AsH3研究进展
王学谦, 谢怡冰, 宁平, 王郎郎, 林奕龙, 黄红旗
昆明理工大学环境科学与工程学院,昆明 650500
A State-of-the-art Review on Removal of AsH3 from Industrial Waste Gas by Modified Adsorbent
WANG Xueqian, XIE Yibing, NING Ping, WANG Langlang, LIN Yilong, HUANG Hongqi
School of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1557KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 非常规大气污染物砷化氢(AsH3)主要来源于有色金属矿冶炼、磷化工、煤化工、石油加工炼制等行业,其特有的毒性对人体健康和生态安全造成严重的威胁。20世纪初,国内外一直鲜有关于砷化氢去除的研究,近几十年来,由于人类工业化进程的加快,越来越多的学者对砷化氢的毒性性状、迁移转化和去除机制开展了研究。由于砷化氢具有较强的还原性,早期的去除方法主要为氧化性溶液吸收法,目前国内仍采用此方法,后来又相继出现直接燃烧法和催化分解法。然而,这几种方法都存在能耗大、工艺复杂等缺陷。
研究者们致力于寻找一种更合理的砷化氢去除方法。对比一些结构不规则、比表面积小的传统吸附剂,改性吸附剂具有三大优势:(1)通过化学吸附、催化氧化等多种途径去除砷化氢,效率高、成本低;(2)对目标污染物具有选择性吸附能力;(3)砷化氢的反应产物能被稳定吸附在改性吸附剂上,不会造成二次污染。
在较高效率的改性吸附剂中已获得成功应用的载体材料包括活性炭、介孔氧化铝和各类分子筛等。其中铜基改性活性炭吸附剂的研究应用最早;钯基改性介孔氧化铝是目前抗毒稳定性最强的改性吸附剂;公认的21世纪“革命性材料”——石墨烯也被改性并应用于砷化氢的去除研究。近几年的研究工作将负载双金属协同作用、载体优化等手段引入改性吸附剂的制备中,实现了改性吸附剂的晶体结构规整化和表面化学活性优化,为砷化氢去除效率的再次突破性提高提供了可能。此外,除研究改性吸附剂的作用机理和去除性能外,研究者们主要在选择合适的活性组分和载体材料组合制备工艺方面进行了不断尝试,并取得了丰硕的成果,在充分发挥改性吸附剂高效去除能力优势的同时大幅提升了工业适应性。目前,已有几种改性吸附剂应用于工业排放废气中砷化氢的净化处理。
本文总结了砷化氢的主要工业来源和排放后的迁移转化过程,综述了吸附法脱除工业废气中砷化氢研究进展及其在工业上的应用现状;指出虽然改性吸附剂去除砷化氢技术可行,可为工业上高效去除砷化氢废气提供新思路,但是依然存在吸附剂工业推广方面的经验较为欠缺、相关研究较少等问题。随着国家对砷化氢污染造成的环境问题越来越重视,一些更高效、经济和环保的改性吸附剂将会成为研究热点,具有广阔的工业应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王学谦
谢怡冰
宁平
王郎郎
林奕龙
黄红旗
关键词:  砷化氢  迁移转化  改性吸附剂  气体净化    
Abstract: The unconventional air pollutants AsH3 is mainly derived from non-ferrous metal smelting, phosphorus chemical industry, coal chemical industry, petroleum processing and refining industry. The specific toxicity of AsH3 poses serious threat to human health and ecological safety. At the beginning of the 20th century, the removal of AsH3 was rarely studied at home and abroad. In recent decades, due to the acceleration of human industrialization process, increasing researches on the toxic properties, migration, transformation and removal mechanism of AsH3 have been carried out by scholars. Considering the strong reducibility of AsH3, the early removal method mainly focus on oxidizing solution absorption method, which is still employed in China today. Subsequently, direct combustion and catalytic decomposition have been developed in succession. Nevertheless, defects like large energy consumption, complex process and so forth are still existed in these methods.
Researchers are figuring out a more appropriate method for AsH3removal. Compared with some traditional adsorbents with irregular structure and lower surface area, the modified adsorbents show great superiority in three aspects. Ⅰ.They exhibit high efficiency and low cost in removing AsH3 by chemical adsorption, catalytic oxidation and many other ways. Ⅱ. They present high selectivity in adsorbing target pollutants. Ⅲ. The reaction products of AsH3 and the adsorbents can be stably adsorbed on modified adsorbents, and secondary pollution will be avoided.
Currently, activated carbon, mesoporous alumina and diverse molecular sieves have been successfully applied as carrier materials for highly effective adsorbents. The research and application of copper based activated carbon is the earliest. Palladium based mesoporous alumina show the strongest antitoxic stability among the modified adsorbent. Graphene, which has been recognized as the “revolutionary material” in the 21st century, is also modified and applied to the removal of AsH3. In recent study, bimetal synergism and carrier optimization have been introduced in the preparation of modified adsorbents to realize the crystal structure regularization and surface chemical activity optimization of the modified adsorbents, which is possible to make a breakthrough in promoting the removal efficiency of AsH3again. In addition to studying the action mechanism and the removal performance of modified adsorbent, researchers have made continuous attempts to select suitable active components and carrier materials for the adsorbents preparation, and fruitful results have been achieved. The industrial adaptability of the modified adsorbents is greatly improved, while taking full advantages of the efficient removal capacity. Several modified adsorbents have been adopted to the purification of AsH3 in industrial waste gas currently.
In this paper, the main industrial sources of AsH3 and its migration and transformation process are summarized. The research progress and industrial application of AsH3 removal from industrial waste gases by adsorption methods are reviewed. It is pointed out that although the removal of AsH3 by adsorption is feasible and can provide a new idea for the efficient removal of AsH3, there are still some problems like the lack of experience in the industrial application of adsorbent and insufficiency of relative research. As increasing attention has been paid to the environmental problems caused by the pollution of AsH3, some more efficient, economical and environmentally friendly modified adsorbents will become the research focus, which own broad industrial application prospect.
Key words:  arsine    migration and transformation    modified adsorbent    gas purification
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  X511  
基金资助: 国家重点研发计划项目(2018YFC0213400; 2017YFC0210503); 国家自然科学基金(51568027); 云南省中青年学术和技术带头人后备人才项目(2015HB012)
作者简介:  王学谦:男,1975年生,博士,教授,博士研究生导师,研究方向为工业废气净化 E-mail:wxqian3000@aliyun.com;宁平:男,1958年生,博士,教授,博士研究生导师,研究方向为空气废气净化及资源化 E-mail:ningping_58@163.com
引用本文:    
王学谦, 谢怡冰, 宁平, 王郎郎, 林奕龙, 黄红旗. 改性吸附剂脱除工业废气中AsH3研究进展[J]. 材料导报, 2018, 32(23): 4089-4099.
WANG Xueqian, XIE Yibing, NING Ping, WANG Langlang, LIN Yilong, HUANG Hongqi. A State-of-the-art Review on Removal of AsH3 from Industrial Waste Gas by Modified Adsorbent. Materials Reports, 2018, 32(23): 4089-4099.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.010  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4089
1 詹成烈. 中国医学百科全书(砷及其化合物毒性学)[M].上海:上海科学技术出版社,1982:85.
2 Agusa T, Kunito T, Kubota R, et al.Exposure, metabolism, and health effects of arsenic in residents from arsenic-contaminated groundwater areas of Vietnam and Cambodia: A review[J].Reviews on Enviromental Health,2010,25(3):193.
3 Mukherjee A, Sengupta M K, Hossain M A, et al.Arsenic contamination in groundwater: A global perspective with emphasis on the Asian scenario[J].Journal of Health Population & Nutrition,2006,24(2):142.
4 Wu F, Zhao H Y, Li X Y, et al.Clinical analysis of diagnosis and treatment of occupational acute arsine poisoning[J].Journal of Kunming Medical University,2015(3):57(in Chinese).
吴菲,赵红宇,李晓燕,等.急性职业性砷化氢中毒诊治的临床分析[J].昆明医科大学学报,2015(3):57.
5 Hu L M, Bai G P. Analysis of 3 cases of acute arsine poisoning in an electrolytic zinc plant in2012[J].Industrial Health and Occupational Diseases,2015(1):75(in Chinese).
胡黎明,白光平.某电解锌厂2012年3起急性砷化氢中毒事故分析[J].工业卫生与职业病,2015(1):75.
6 Li G S, Li X H.Report of 15 cases of acute arsine poisoning in a smeltery[J].Industrial Health and Occupational Diseases,2016(6):479(in Chinese).
李刚森,李仙华.某冶炼厂急性砷化氢中毒15例报告[J].工业卫生与职业病,2016(6):479.
7 Suh J K, Kang N, Jin B L.Direct determination of arsine in gases by inductively coupled plasma-dynamic reaction cell-mass spectrometry[J].Talanta,2009,78(1):321.
8 Danielson C, Houseworth J, Skipworth E, et al.Arsine toxicity treated with red blood cell and plasma exchanges[J].Transfusion,2006,46(9):1576.
9 Li G, Sun G X, Williams P N, et al.Inorganic arsenic in Chinese food and its cancer risk[J].Environment International,2011,37(7):1219.
10 Hunt K M, Srivastava R K, Athar M.Handbook of Arsenic Toxicology[M].Massachusetts:American Academic Press,2015:301.
11 Xu M, Yan R, Zheng C, et al.Status of trace element emission in a coal combustion process: A review[J].Fuel Processing Technology,2004,85(2-3):215.
12 Gomez C A, Howe P, Hughes M, et al.Environmental health criteria 224 arsenic and arsenic compounds[J].Bulletin of the World Health Organization,2001,13(40):39.
13 Wang X Q.Purifying yellow phosphoric tail gas by catalytic oxidation and investigation of its theory [D]. Kunming: Kunming University of Science and Technology,2007(in Chinese).
王学谦. 黄磷尾气催化氧化净化新技术研发及理论研究[D].昆明:昆明理工大学,2007.
14 Xiao E F, Lei J, Liu Y J, et al.Purification and utilization of yellow phosphorus tail gas[J].Guangdong Chemical Industry,2016,43(17):254(in Chinese).
肖二飞,雷军,刘应杰,等.黄磷尾气的净化与综合利用[J].广东化工,2016,43(17):254.
15 Quinn R, Toseland B A.Liquid-phase guard bed for removal of synthesis gas contaminants[J].Industrial & Engineering Chemistry Research,2008,47(18):7027.
16 水志良,陈起超,水浩东.砷化学与工艺学[M].北京:化学工业出版社,2014:169.
17 Chou Y H, Chen B Z.Toxicity of hydrogen arsenide and its prevention in copper electrolyte purification[J].Non-ferrous Smelting,2001,30(2):36(in Chinese).
仇勇海,陈白珍.砷化氢的毒性及在铜净液中的防治[J].中国有色冶金,2001,30(2):36.
18 Zhou X Q.Study on the removal of arsenic from water gas[J].Industrial Catalysis,2005,12(s1):242(in Chinese).
周晓奇. 水煤气脱砷的研究[J].工业催化,2005,12(s1):242.
19 Liu H, Ni W, Li Z, et al.Strategic thinking on IGCC development in China[J].Energy Policy,2008,36(1):1.
20 Wahab M.Trace metals volatilisation in fluidised-bed combustion and gasification of coal[J].Combustion Science and Technology,1989,63(4-6):209.
21 Becker E, Rampazzo R T, Dessuy M B, et al.Direct determination of arsenic in petroleum derivatives by graphite furnace atomic absorption spectrometry: A comparison between filter and platform atomizers[J].Spectrochimica Acta Part B Atomic Spectroscopy,2011,66(5):345.
22 Quinn R, Mebrahtu T, Dahl T A, et al.The role of arsine in the deactivation of methanol synthesis catalysts[J].Applied Catalysis A General,2004,264(1):103.
23 Furue R, Koveke E P, Sugimoto S, et al.Arsine gas sensor based on gold-modified reduced graphene oxide[J].Sensors & Actuators B Chemical,2017,240:657.
24 Hu X L, Sun L M, Ma H W, et al.The industrial application of nickel-based catalyst for pyrolysis gasoline first stage hydrogenation in domestic large scale ethylene cracker[J].Modern Chemical Industry,2017(5):162(in Chinese).
胡晓丽,孙利民,马好文,等.裂解汽油一段加氢镍基催化剂在国内大型乙烯的工业应用[J].现代化工,2017(5):162.
25 Zhu L Z, Huang Y Q, Su H C, et al. The application of type9801 dearsenicing agent in ethylene production[J].Petrochemical Techno-logy & Application,2003(3):187(in Chinese).
朱兰忠,黄玉泉,苏海潮,等.9801型脱砷剂在乙烯生产中的应用[J].石化技术与应用,2003(3):187.
26 Akter K F, Owens G, Davey D E, et al.Arsenic speciation and toxicity in biological systems[J].Reviews of Environmental Contamination and Toxicology,2005,184:97.
27 Mestrot A, Merle J K, Broglia A, et al.Atmospheric stability of arsine and methylarsines[J].Environmental Science & Technology,2011,45(9):4010.
28 Sanchezrodas D, Am S D L C, Oliveira V, et al. Health implications of the distribution of arsenic species in airborne particulate matter[J].Journal of Inorganic Biochemistry,2011,108(3):112.
29 Gonzalezcastanedo Y, Sanchezrodas D, Am S D L C, et al. Arsenic species in atmospheric particulate matter as tracer of the air quality of Donana Natural Park (SW Spain)[J].Chemosphere,2015,119:1296.
30 Zhao J Y, He F Q, Li R H.Advances in research of phytoreme-diation of arsenic in water[J].Hubei Agricultural Sciences,2013,52(18):4308(in Chinese).
赵俊英,贺奋琴,李荣花.水中砷的植物修复研究进展[J].湖北农业科学,2013,52(18):4308.
31 Ascar L, Ahumada I, Richter P.Influence of redox potential(Eh) on the availability of arsenic species in soils and soils amended with biosolid[J].Chemosphere,2008,72(10):1548.
32 Qin P F, Li X H, Hou H, et al.Health risk of heavy metal pollution in water around an abandoned manganese sulfate chemical plant site[J].Research of Environmental Sciences,2011,24(4):395(in Chinese).
秦普丰,李细红,侯红,等.硫酸锰化工厂遗址周围水体重金属污染健康风险评价[J].环境科学研究,2011,24(4):395.
33 Du M.Study on ecological risk assessment based on arsenic and mercury speciation[D].Beijing: University of Chinese Academy of Sciences,2014(in Chinese).
杜萌. 基于砷、汞形态的生态风险评价研究[D].北京:中国科学院大学,2014.
34 Xie W Q.Study on new arsenic hydride gas treatment process and industrial design[J].China Nonferrous Metallurgy,2016,45(3):60(in Chinese).
谢文清. 砷化氢气体处理新工艺的研究及工业设计方案[J].中国有色冶金,2016,45(3):60.
35 Guo X L.Study on the treatment of hydrogen arsenide tail gas[J].Shandong Chemical Industry,1996(3):27(in Chinese).
郭秀丽. 砷化氢尾气处理方法的研究[J].山东化工,1996(3):27.
36 Postma L H, Corvers A. Process for the removal of arsine from a hydrocarbon stream with an adsorbent: US,20060048645A1[P].2006-10-09.
37 Kanazirev V I, Gorawara J K.Synthesis gas purification by selective copper adsorbents:USWO/2013/028238[P].2013.
38 Han D S, Wahab A, Batchelor B.Surface complexation modeling of arsenic(Ⅲ) and arsenic(Ⅴ) adsorption onto nanoporous titania adsorbents(NTAs)[J].Journal of Colloid & Interface Science,2010,348(2):591.
39 Haacke G.Arsine adsorption on activated carbon[J].Journal of the Electrochemical Society,1988,135(3):715.
40 Qiu J, Ning P, Wang X Q, et al.Removing carbonyl sulfide with metal-modified activated carbon[J].Frontiers of Environmental Science & Engineering,2016,10(1):11.
41 Wang X Q, Ma Y X, Ning P, et al.Adsorption of carbonyl sulfide on modified activated carbon under low-oxygen content conditions[J].Adsorption,2014,20(4):623.
42 Wang X Q, Wang P, Ning P, et al.Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride[J].RSC Advances,2015,5(32):24899.
43 Quinn R, Dahl T A, Diamond B W, et al.Removal of arsine from synthesis gas using a copper on carbon adsorbent[J].Industrial & Engineering Chemistry Research,2006,45(18):6272.
44 Johnson M M. Process for removal of arsenic from gases: US,4605812[P].1986-08-12.
45 Jiang M, Bai Y W, Ning P, et al.Adsorption removal of arsine by modified activated carbon[J].Adsorption,2015,21(1):135.
46 Petit C, Peterson G W, Mahle J, et al.The effect of oxidation on the surface chemistry of sulfur-containing carbons and their arsine adsorption capacity[J].Carbon,2010,48(6):1779.
47 Hines D, Bagreev A, Bandosz T J.Surface properties of porous carbon obtained from polystyrene sulfonic acid-based organic salts[J].Langmuir the ACS Journal of Surfaces & Colloids,2004,20(8):3388.
48 Watanabe T, Imai H, Suzuki T.Dissociative mechanisms of monosilane and arsine on copper(Ⅱ) oxide[J].Journal of the Electrochemical Society,1996,143(8):2654.
49 Yu Q Y, Leng B, Hao X S, et al.Study of adsorbent and process for removal of arsenic in pyrolysis gas[J].Petrochemical Technology,2003(7):549(in Chinese).
余启炎,冷冰,郝雪松,等.裂解气脱砷催化剂及工艺研究[J].石油化工,2003(7):549.
50 Gao Z M, Zhao Z, Yang X G, et al.Catalytic reduction of NO by CuO activated carbon and FeO activated carbon[J].Chinese Journal of Applied Chemistry,1996(4):77(in Chinese).
高志明,赵震,杨向光,等.CuO/活性炭和FeO/活性炭催化还原NO[J].应用化学,1996(4):77.
51 Petit C, Kante K, Bandosz T J.The role of sulfur-containing groups in ammonia retention on activated carbons[J].Carbon,2010,48(3):654.
52 Yu Q Y, Yang X H, Hao X S, et al.Arsenic removal technology[J].Petrochemical Technology,2005(z1):105(in Chinese).
余启炎,杨晓红,郝雪松,等.脱砷技术[J].石油化工,2005(z1):105.
53 Bai Y W.Study on adsorption and purification of AsH3 gas at low temperature and micro oxygen[D].Kunming: Kunming University of Science and Technology,2010(in Chinese).
柏杨巍. 低温微氧条件下AsH3气体吸附净化研究[D].昆明:昆明理工大学,2010.
54 Yan S D.Purification of AsH3 from waste gas of hot smelting by copper modified molecular sieve adsorbent at low temperature and micro oxygen[D].Kunming: Kunming University of Science and Technology,2016(in Chinese).
严书娣. 分子筛负载Cu吸附剂在低温微氧条件下净化矿热冶炼废气中AsH3研究[D].昆明:昆明理工大学,2016.
55 Lin Y L, Wang X Q, Hao J M, et al.Improved arsine removal efficiency over MnOx supported molecular sieves catalysts via micro-oxygen oxidation[J].Energy & Fuels,2017,31(9):9752.
56 Kunaseth M, Mudchimo T, Namuangruk S, et al.A DFT study of arsine adsorption on palladium doped graphene: Effects of palladium cluster size[J].Applied Surface Science,2016,367:552.
57 Busca G.Structural, surface, and catalytic properties of aluminas[J].Advances in Catalysis,2014,57:319.
58 Poulston S, Granite E J, Pennline H W, et al.Palladium based sorbents for high temperature arsine removal from fuel gas[J].Fuel,2011,90(10):3118.
59 Carr N L, Stahlfeld D L, Robertson H G.Remove arsine to protect catalyst[J].Hydrocarbon Process,1985,32:100.
60 Carr N L, Massoth F E, Stahlfeld D L, et al.Process for reducing the arsenic content of gaseous hydrocarbon streams by use of supported lead oxide: US,3782076[P].1974.
61 Blankenship S A, Voight R W. Adsorbent for the removal of trace quantities from a hydrocarbon stream and process for its use: US,5990372[P].1999-11-23.
62 Yu T C, Shaw H.The effect of sulfur poisoning on methane oxidation over palladium supported on γ-alumina catalysts[J].Applied Catalysis B Environmental,1998,18(1-2):105.
63 Rupp E C, Granite E J, Stanko D C.Laboratory scale studies of Pd/γ-Al2O3,sorbents for the removal of trace contaminants from coal-derived fuel gas at elevated temperatures[J].Fuel,2013,108:131.
64 Granite E J, Pennline H W. Method for high temperature mercury capture from gas streams:US,7033419[P].2006-09-03.
65 Granite E J, Myers C R, King W P, et al.Sorbents for mercury capture from fuel gas with application to gasification systems[J].Industrial & Engineering Chemistry Research,2006,45(13):4844.
66 Poulston S, Granite E J, Pennline H W, et al.Metal sorbents for high temperature mercury capture from fuel gas[J].Fuel,2007,86(14):2201.
67 Zheng X F, Chen J W, Qin H D, et al.Research progress of noble metal and SiO2 core-shell nanomaterials[J].Bulletin of the Chinese Ceramic Society,2017,36(5):1609(in Chinese).
郑兴芳,陈敬伟,秦浩东,等.贵金属SiO2核壳纳米材料的研究进展[J].硅酸盐通报,2017,36(5):1609.
68 Baltrus J P, Granite E J, Rupp E C, et al.Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents[J].Fuel,2011,90(5):1992.
69 Lee Y, Hahm Y M, Lee D H.Preparation of spherical γ-Al2O3 powder by using aluminum salt under W/O emulsion method[J].Journal of Industrial & Engineering Chemistry,2005,11(1):27.
70 Baltrus J P, Granite E J,Pennline H W, et al.Surface characterization of palladium-alumina sorbents for high temperature capture of mercury and arsenic from fuel gas[J].Fuel,2010,89(6):1323.
71 Vimalchand P, Morton F C, Datta S, et al.Slipstream tests of palladium sorbents for high temperature capture of mercury, arsenic, selenium and phosphorous from fuel gas[C]∥Aiche Spring National Meeting. Tampa,2009.
72 Shang H J, Zhang S H, Zhao D, et al.Research progress of molecular sieve catalyst[J].Chemical Industry and Engineering Progress,2011(s1):407(in Chinese).
尚会建,张少红,赵丹,等.分子筛催化剂的研究进展[J].化工进展,2011(s1):407.
73 Schunk B S A, Demuth D G, Schulzdobrik B, et al. Microporous mesoporous mater[J].Schüth,2005,77:1.
74 Xu C Y, Zhang H Y, Ma Y T, et al.Review on modification of molecular sieves[J].Journal of Energy and Chemical Industry,2017,38(1):51(in Chinese).
徐晨瑀,张海燕,马宇彤,等.分子筛改性研究综述[J].能源化工,2017,38(1):51.
75 Ji G J, Shen J, Yang L N, et al.Research advances in metal modified molecular sieves for the adsorptive desulfurization[J].Applied Chemical Industry,2014,43(11):2069(in Chinese).
纪桂杰,沈健,杨丽娜,等.金属改性分子筛吸附脱硫研究新进展[J].应用化工,2014,43(11):2069.
76 Wang X, Guo S, Zhao L.Synthesis of Hβ(core)/SAPO-11 (shell) composite molecular sieve and its catalytic performances in the methylation of naphthalene with methanol[J].Bulletin of the Korean Chemical Society,2013,34(12):3829.
77 Higgins J B, Lapierre R B, Schlenker J L, et al.The framework topology of zeolite beta[J].Zeolites,1988,8(6):446.
78 Li G, Wang B, Sun Q, et al.Adsorption of lead ion on amino-functionalized fly-ash-based SBA-15 mesoporous molecular sieves prepared via two-step hydrothermal method[J].Microporous & Mesoporous Materials,2017,252:105.
79 Howard C J, Dagle R A, Lebarbier V M, et al.Progress toward biomass and coal-derived syngas warm cleanup: Proof-of-concept process demonstration of multicontaminant removal for biomass application[J].Industrial & Engineering Chemistry Research,2013,52(24):8125.
80 Li L, King D L, Liu J, et al.Stabilization of metal nanoparticles in cubic mesostructured silica and its application in regenerable deep desulfurization of warm syngas[J].Chemistry of Materials,2009,21(22):5358.
81 Hu Y, Xiao P, Xi C, et al.Research advance on synthesis and application of mesoporous alumina[J].New Chemical Materials,2014,42:227.
[1] 王馨博, 栾志强, 李凯, 栗丽, 唐腾飞. 气凝胶在气体吸附净化中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2214-2222.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed