Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14110-14115    https://doi.org/10.11896/cldb.19050139
  金属与金属基复合材料 |
新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能
邓安强1, 2, 3, 罗永春1, 2, 王浩1, 赵磊1, 郑坤1
1 兰州理工大学材料科学与工程学院, 兰州 730050
2 兰州理工大学, 有色金属先进加工与再利用省部共建国家重点实验室, 兰州 730050
3 宁夏大学机械工程学院, 银川 750021
Structure and Electrochemical Properties of New Mg-free YNi3.5-xAlx(x=0—0.3) Hydrogen Storage Alloys
DENG Anqiang1, 2, 3, LUO Yongchun1, 2, WANG Hao1, ZHAO Lei1, ZHENG Kun1
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 4506KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空电弧熔炼和真空退火热处理制备了YNi3.5-xAlx(x=0,0.05,0.1,0.15,0.2,0.3)合金。对其结构进行分析,结果表明,合金主相为A2B7超点阵结构相。当x=0时,合金主相为Gd2Co7,加入Al后,合金主相变为Ce2Ni7,Al在Ce2Ni7相中主要占据CaCu5结构的6h位置。Al在Ce2Ni7相中的固溶度有限,当x>0.1时,合金中出现CaCu5第二相,且Al更多的是固溶到CaCu5相中。Al在Ce2Ni7相中固溶越多,超点阵Laves和CaCu5两个结构单元体积失配越小。加入Al后,合金电极吸/放氢平台降低,当x>0.1后,由于出现CaCu5第二相,平台压稍有升高。合金电极最大放电容量随Al含量增加整体升高,从x=0时的105.52 mAh·g-1上升到x=0.3时的282.7 mAh·g-1。随Al含量增加,尤其当x≥0.1后,Al更多的是固溶到CaCu5第二相,在Ce2Ni7主相中固溶逐步减少,合金Laves和CaCu5两个结构单元体积失配加大,合金电极循环稳定性整体呈下降趋势,从x=0时的52.89%到x=0.3时的6.5%。Y2Ni7合金电极动力学较差,HRD900只有5.83%。随着Al含量的增加,合金动力学性能先增强后减弱,在x=0.15时HRD900达到79.04%。在Al含量较低(x≤0.15)时,合金电极高倍率性能主要取决于氢在合金体相内的扩散速率,在Al含量较高(x>0.15)时,合金电极高倍率性能主要取决于合金电极表面电荷的转移速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓安强
罗永春
王浩
赵磊
郑坤
关键词:  超点阵结构  失配  平台压  电化学性能    
Abstract: YNi3.5-xAlx(x=0,0.05,0.1,0.15,0.2,0.3) hydrogen storage alloys were prepared by vacuum arc melting and vacuum annealing heat treatment.Structural analysis of the alloys showed that the main phase of the alloys was A2B7 superlattice structural phase.The main phase of alloys was Gd2Co7-type. When x=0,which transformed to Ce2Ni7-type after adding Al element.Aluminium occurs mainly at the 6h site of CaCu5-type slab in Ce2Ni7 phase althongh the solubility is limited.When x>0.1, the CaCu5 phase as the second phase appears in the alloy, which has the greater solid solution for Al elecment than that of the main phase.The greater the solid solution in Ce2Ni7 phase for Al elecment, the smaller the volume mismatch between Laves slab and CaCu5 slab in superlattice. The plateau pressure during hydrogen absorption/desorption of alloy electrodes decreases with the increase of Al element,while the plateau pressure increases slightly due to the appearance of CaCu5 -type phase after x>0.1. The maximum discharge capacity of alloy electrodes increases from 105.52 mAh·g-1 at x=0 to 282.7 mAh·g-1 at x=0.3 with the increase of Al content. With further increasing Al content, especially when x≥0.1, Al was dissolved greater into the second phase of CaCu5 while the solid solution in the main phase of Ce2Ni7 decreases gradually. The cyclic stability of alloy electrodes decreases from 52.89% at x=0 to 6.5% at x=0.3 due to the increase of volume mismatch between Laves slab and CaCu5 slab.The electrode kinetics of Y2Ni7 alloy electrodes was poor, and the HRD900 was only 5.83%. With increasing the Al content, the dynamic properties of the alloys first increased and then decreased, and HRD900 was 79.04% at x=0.15.High rate dischargeability characteristics of alloy electrode was controlled by the hydrogen diffusion rate in the bulk alloy when x≤0.15 and by the charge transfer rate on the alloy electrode surface when x>0.15.
Key words:  superlattice structure    mismatch    plateau pressure    electrochemical properties
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG139.7  
基金资助: 国家自然科学基金(51761026);宁夏自然科学基金(2019AAC03003);兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室开放基金(SKLAB02019004)
作者简介:  邓安强,宁夏大学副教授,兰州理工大学在职博士,研究方向为稀土储氢材料。
罗永春,兰州理工大学教授,博士研究生导师,研究方向为储氢材料、材料电化学。
引用本文:    
邓安强, 罗永春, 王浩, 赵磊, 郑坤. 新型无镁YNi3.5-xAlx(x=0~0.3)储氢合金的结构和电化学性能[J]. 材料导报, 2020, 34(14): 14110-14115.
DENG Anqiang, LUO Yongchun, WANG Hao, ZHAO Lei, ZHENG Kun. Structure and Electrochemical Properties of New Mg-free YNi3.5-xAlx(x=0—0.3) Hydrogen Storage Alloys. Materials Reports, 2020, 34(14): 14110-14115.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050139  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14110
1 Virkar A V, Raman A. Journal of the Less Common Metals, 1969, 18(1),59.
2 Oesterreicher H, Clinton J, Bittner H. Materials Research Bulletin, 1976, 11(10),1241.
3 Chung U I, Lee J Y. Journal of Non-Crystalline Solids, 1989, 110(2-3),203.
4 Denys R V, Riabov A B, Yartys V A, et al. Journal of Solid State Che-mistry, 2008, 181(4),812.
5 Gal L, Charbonnier V, Zhang J, et al. International Journal of Hydrogen Energy, 2015, 40(47),17017.
6 Zhao Y M, Wang W F, Han S M, et al. Journal of Alloys and Compounds, 2019,775,259.
7 Liu J J, Chai Y J, Wang N. International Journal of Electrochemical Science, 2019,14,402.
8 Li Y, Hou X W, Wang C X, et al. International Journal of Hydrogen Energy, 2018,43(10),5104.
9 Zhao Y M, Zhang S, Liu X X,et al. International Journal of Hydrogen Energy, 2018,43(37),17809.
10 Charbonnier V, Zhang J, Monnier J, et al. The Journal of Physical Chemistry C, 2015, 119(22),12218.
11 Charbonnier V, Monnier J, Zhang J, et al. Journal of Power Sources, 2016, 326,146.
12 Liu J J, Li Y, Han D, et al. Journal of Power Sources, 2015,300,77.
13 Young K, Ouchi T, Wang L, et al. Journal of Power Sources, 2015, 279,172.
14 Mendelsohn M H, Gruen D M, Dwight A E. Journal of the Less Common Metals, 1979, 63(2),193.
15 Mendelsohn M H, Gruen D M, Dwight A E. Nature, 1977, 269(5623),45.
16 Liu J J, Li K, Cheng H H, et al. International Journal of Hydrogen Energy, 2017, 42(39),24904.
17 Roisnel T, Rodríquez C. Materials Science Forum, 2001, 378-381,118.
18 Will G.Powder diffraction: The Rietveld method and the two-stage method to determine and refine crystal structures from powder diffraction data, Springer Press, Berlin, 2006.
19 Notten P H L, Hokkeling P. Journal of the Electrochemical Society, 1991,138(7),1877.
20 Nishina T, Ura H, Uchida I. Journal of the Electrochemical Society, 1997,144(4),1273.
21 Buschow K H J,Van Der Goot A S. Journal of the Less Common Metals, 1970, 22(4),419.
22 Zhang Q A, Pang G, Si T Z, et al. Acta Materialia, 2009, 57(6),2002.
23 Zhang J, Zhou G, Chen G, et al. Acta Materialia, 2008, 56(19),5388.
24 Latroche M,Baddour-Hadjean R, Percheron-Guégan A. Journal of Solid State Chemistry, 2003, 173(1),236.
25 Bennett P D, Sakai T. Proceedings of the Symposium on Hydrogen and Metal Hydride Batteries, The Electrochemical Society Princeton, Inc, 1994.
26 Yasuoka S, Ishida J, Kai T, et al. International Journal of Hydrogen Energy, 2017, 42(16),11574.
27 Li F, Young K, Ouchi T, et al. Journal of Alloys and Compounds, 2009, 471(1-2),371.
[1] 徐枫, 严红革, 陈吉华, 张正富, 范长岭. 原料对强化固相反应合成的LiNi1/3Co1/3Mn1/3O2粉末电化学性能的影响[J]. 材料导报, 2020, 34(6): 6039-6043.
[2] 高国梁, 张海涛, 李晨斌, 王德宇, 沈彩. 共价有机聚合物/石墨烯复合材料的制备及锂电性能研究[J]. 材料导报, 2020, 34(6): 6161-6165.
[3] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[4] 周勇, 赵飞, 高倩, 孙良, 董会, 翟文彦. Sn含量对Al-Zn合金组织与溶解性能的影响[J]. 材料导报, 2019, 33(Z2): 406-409.
[5] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[6] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[7] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[8] 计晓琴, 孙德林, 余先纯, 郝晓峰, 陈新义, 朱志红. Fe3+掺杂活化木质素基木材陶瓷的制备及电化学性能[J]. 材料导报, 2019, 33(20): 3390-3395.
[9] 王英, 阮威, 唐仁衡, 肖方明, 孙泰, 黄玲. 不同粒径纳米硅制备Si@C/石墨负极材料及其电化学性能[J]. 材料导报, 2019, 33(18): 3021-3025.
[10] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[11] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[12] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[13] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[14] 张传涛, 邢宝林, 黄光许, 张双杰, 张传祥, 史长亮, 朱阿辉, 姚友恒, 张青山. 水热炭化-KOH活化制备核桃壳活性炭电极材料的研究[J]. 《材料导报》期刊社, 2018, 32(7): 1088-1093.
[15] 司东永, 黄光许, 张传祥, 邢宝林, 陈泽华, 陈丽薇, 张浩然. 腐殖酸基石墨化材料的制备及其电化学性能[J]. 《材料导报》期刊社, 2018, 32(3): 368-372.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed