Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14116-14121    https://doi.org/10.11896/cldb.19060165
  金属与金属基复合材料 |
半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响
黄晓锋1, 2, 魏浪浪1, 杨剑桥1, 张乔乔1, 尚文涛1, 李旭娇1
1 兰州理工大学, 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
2 兰州理工大学, 有色金属合金及加工教育部重点实验室, 兰州 730050
Effect of Semi-Solid Isothermal Heat Treatment on Non-dendritic Structure of Mg-7Zn-1Cu-0.3V Magnesium Alloy
HUANG Xiaofeng1, 2, WEI Langlang1, YANG Jianqiao1, ZHANG Qiaoqiao1, SHANG Wentao1, LI Xujiao1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Non-ferrous Metal Alloys and Processing, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7210KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用半固态等温热处理法研究了保温温度和保温时间对Mg-7Zn-1Cu-0.3V镁合金半固态非枝晶组织演变的影响。结果表明:半固态等温热处理能将Mg-7Zn-1Cu-0.3V合金的原始树枝晶组织转变为半固态非枝晶组织,最终得到细小、圆整且分布均匀的球状颗粒。延长等温时间或升高保温温度有利于非枝晶组织的分离球化;但当保温温度过高或保温时间过长时,半固态颗粒会出现合并及长大现象,其主要演变符合Ostwald熟化机制。在整个等温热处理过程中,半固态组织演变主要经历了初始粗化、组织分离及球化、颗粒合并及熟化三个阶段。Mg-7Zn-1Cu-0.3V合金的最佳等温热处理工艺为:保温温度580 ℃,保温时间35 min。在该条件下得到的非枝晶颗粒平均尺寸、固相率及形状因子分别为33.25 μm、45%及1.33。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晓锋
魏浪浪
杨剑桥
张乔乔
尚文涛
李旭娇
关键词:  Mg-7Zn-1Cu-0.3V镁合金  半固态等温热处理  非枝晶组织  组织演变    
Abstract: In this paper, the effects of holding temperature and holding time on the semi-solid non-dendritic microstructure evolution of Mg-7Zn-1Cu-0.3V magnesium alloy were studied by semi-solid isothermal heat treatment. The results show that the semi-solid isothermal heat treatment can transform the original dendritic structure of the Mg-7Zn-1Cu-0.3V alloy into semi-solid non-dendritic structure, and finally obtain small, round and evenly distributed spherical particles. Prolonging the isothermal time or increasing the holding temperature is beneficial to the separation and spheroidization of non-dendritic structures. However, when the holding temperature is too high or the time is too long, the semi-solid particles will merge and grow, and the main evolution mechanism is in accordance with the Ostwald ripening mechanism. During the whole isothermal heat treatment process, the semi-solid microstructure evolution mainly experienced three stages: initial coarsening, tissue separation and spheroidization, particle combination and ripening. The best isothermal heat treatment process of Mg-7Zn-1Cu-0.3V alloy is held for 35 min at the holding temperature of 580 ℃. The average size, solid phase rate and shape factor of non-dendritic particles are 33.25 μm, 45% and 1.33, respectively.
Key words:  Mg-7Zn-1Cu-0.3V magnesium alloy    semi-solid isothermal heat treatment    non-dendritic structure    microstructural evolution
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TG146.22  
基金资助: 国家自然科学基金(51464032)
作者简介:  黄晓锋,博士,副教授,研究生导师,2002年1月于哈尔滨工业大学获得博士学位,2004年5月于上海交通大学博士后出站,2004年6月进入兰州理工大学/甘肃省有色金属新材料重点实验室-省部共建国家重点实验室培育基地工作。主要从事高性能轻合金材料、轻合金半固态成形和精密塑性加工的研究工作。主持和参加省部级3项、863计划2项、先后发表文章80余篇,申请专利4项,并担任多个学术期刊的审稿人。
引用本文:    
黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
HUANG Xiaofeng, WEI Langlang, YANG Jianqiao, ZHANG Qiaoqiao, SHANG Wentao, LI Xujiao. Effect of Semi-Solid Isothermal Heat Treatment on Non-dendritic Structure of Mg-7Zn-1Cu-0.3V Magnesium Alloy. Materials Reports, 2020, 34(14): 14116-14121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060165  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14116
1 Guo J, Ye B, Wu Y J, et al. Special Casting & Nonferrous Alloys, 2019, 39(3), 254(in Chinese).
郭径, 叶兵, 吴玉娟, 等. 特种铸造及有色金属, 2019, 39(3), 254.
2 Xu J, Liu G, Zhang S, et al. Rare Metals, 2010, 29(5), 542.
3 Arruebarrena G, Hurtado I, Vinl J, et al. Advanced Engineering Materials, 2010, 9(9), 751.
4 Ye C L. Technology and Economic Guide, 2018, 26(19), 76(in Chinese).
叶成林. 科技经济导刊, 2018, 26(19), 76.
5 Buha J. Materials Science and Engineering A, 2008, 491(1/2), 70.
6 Feng K, Huang X F, Ma Y, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(3), 635(in Chinese).
冯凯, 黄晓锋, 马颖, 等. 中国有色金属学报, 2013, 23(3), 635.
7 Spencer D B, Mehrabian R, Flemings M C. Metallurgical Transactions, 1972, 3(7), 1925.
8 Nishida M, Kawamura Y, Yamamuro T. Materials Science and Enginee-ring: A, 2004, 375-377, 1217.
9 Zhang D F, Qi F G, Zhao X B, et al. Journal of Chongqing University, 2010, 33(11), 53(in Chinese).
张丁非, 齐福刚, 赵霞兵, 等. 重庆大学学报, 2010, 33(11), 53.
10 Ye J, Lin X P, Dong Y, et al. Materials Science Forum, 2016, 4269(873), 33.
11 Buha J. Acta Materialia, 2008, 56(14), 3533.
12 Wang J H. Hot Working Technology, 2015, 44(19), 84(in Chinese).
王建华. 热加工工艺, 2015, 44(19), 84.
13 Zhang C, Liu J R, Huang W D. Rare Metal Materials and Engineering, 2011, 40(7), 1173(in Chinese).
张超, 刘建睿, 黄卫东. 稀有金属材料与工程, 2011, 40(7), 1173.
14 Zhong L X, Yang M B, Yuan S, et al. Journal of Chongqing University of Technology (Natural Science), 2019, 33(8), 90(in Chinese).
钟罗喜, 杨明波, 袁淑,等. 重庆理工大学学报(自然科学), 2019, 33(8), 90.
15 Li A W, Liu J W, Wu C L, et al. Chinese Journal of Nonferrous Metals, 2010, 20(8), 1487(in Chinese).
李爱文, 刘江文, 伍翠兰, 等. 中国有色金属学报, 2010, 20(8), 1487.
16 Huang X F, Zhang Y, Qin M L, et al. Transactions of Materials and Heat Treatment, 2016, 37(8), 53(in Chinese).
黄晓锋, 张玉, 秦牧岚, 等. 材料热处理学报, 2016, 37(8), 53.
17 Li Y D, Hao Y, Chen T J, et al. Chinese Journal of Nonferrous Metals, 2002, 12(6), 1143(in Chinese).
李元东, 郝远, 陈体军, 等, 中国有色金属学报, 2002, 12(6), 1143.
18 Hu Y, Rao L, Li Q P, et al. Rare Metal Materials and Engineering, 2016, 45(2), 493(in Chinese).
胡勇, 饶丽, 黎秋萍, 等. 稀有金属材料与工程, 2016, 45(2), 493.
19 Kang M K, Kim D Y, Hwang M H. Journal of the European Ceramic Society, 2002, 22(5), 603.
20 Wang S C, Li Y Y, Chen W P, et al. Acta Metallurgica Sinica, 2008, 44(8), 905(in Chinese).
王顺成, 李元元, 陈维平, 等. 金属学报, 2008, 44(8), 905.
21 Li C, Zhou C S, Liu Y F, et al. Foundry, 2014, 63(5), 495(in Chinese).
李春, 周春生, 刘彦峰, 等. 铸造, 2014, 63(5), 495.
22 Liu H Y, Wu K M, Lei Y H, et al. Physics Examination and Testing, 2007, 25(6), 1(in Chinese).
刘宏玉, 吴开明, 雷应华, 等. 物理测试, 2007, 25(6), 1.
23 Elgallad E M, Chen X G. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2012, 556, 783.
24 Le Q C, Zhang X J, Cui J Z, et al. Acta Metallurgica Sinica, 2002, 38(12),1266(in Chinese).
乐启炽, 张新建, 崔建忠, 等. 金属学报, 2002, 38(12), 1266.
25 Zhang Y, Huang X F, Ma Y, et al. China Foundry, 2017, 14(2), 433.
26 Atkinson H V, Liu D. Materials Science and Engineering A, 2008, 496(1-2), 439.
27 Du L, Yan H. Chinese Journal of Materials Research, 2012, 26(2), 169(in Chinese).
杜磊, 闫洪. 材料研究学报, 2012, 26(2), 169.
[1] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[2] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[3] 石晓辉, 曹祖涵, 张敏, 郭瑞鹏, 乔珺威. 基于位错密度分析的Ti-8Al-1Mo-1V钛合金片层组织在热轧及退火过程中的演变机制[J]. 材料导报, 2020, 34(12): 12101-12104.
[4] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[5] 黄晓锋, 张乔乔, 马亚杰, 魏浪浪, 杨剑桥. Mg-6Zn-1Cu-0.3Mn镁合金的半固态组织演变[J]. 材料导报, 2019, 33(20): 3441-3447.
[6] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[7] 蒲治军,陈东杰,张奎,李兴刚,李永军,马鸣龙,石国梁,袁家伟,李蒙. 关于镁合金中长周期有序结构的研究综述*[J]. 《材料导报》期刊社, 2017, 31(7): 79-82.
[8] 周双双, 刘希琴, 刘子利, 侯志国, 田青超. 正火工艺对冷轧态低合金低温钢组织及拉伸性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 98-104.
[9] 李晓林, 肖宝亮, 崔阳, 李飞, 张大伟, 缪成亮, 张旭, 朱腾威. Nb、Ti微合金钢中碳氮化物固溶与再析出的研究[J]. 《材料导报》期刊社, 2017, 31(2): 105-111.
[10] 李永坤, 李璐, 周荣锋, 张岩峰, 肖寒, 蒋业华, 卢德宏. ZCuSn10合金半固态流变挤压件显微组织的演变*[J]. 《材料导报》期刊社, 2017, 31(16): 60-64.
[11] 唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed