Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 87-91    https://doi.org/10.11896/j.issn.1005-023X.2017.010.018
  材料研究 |
6013-T4铝合金不同温度下的动态流变应力及组织演变
唐徐1,2,李落星1,2,叶拓1,2,李荣启1,2
1 湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082;
2 湖南大学机械与运载工程学院, 长沙 410082
Dynamic Flow Stress and Microstructure Evolution of 6013-T4 Aluminum Alloy at Different Temperatures
TANG Xu1,2, LI Luoxing1,2, YE Tuo1,2, LI Rongqi1,2
1 The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分离式霍普金森(SHPB)压杆装置进行6013-T4铝合金动态压缩试验,获得温度为25 ℃、100 ℃、200 ℃、300 ℃、400 ℃,应变速率为1 000 s-1、2 000 s-1、3 000 s-1、4 000 s-1、5 000 s-1条件下材料的真应力-真应变曲线,并通过透射电子显微镜(TEM)观测了6013-T4铝合金在不同变形条件下的组织演变。结果表明:6013铝合金有明显的温度敏感性,但是对应变速率的敏感性较弱。应变速率和温度对6013铝合金微观组织的影响显著,位错密度随应变速率的升高而增大,随温度的升高而减小。基于实验数据,求得了6013铝合金Johnson-Cook模型的本构参数并建立其本构模型。与实验结果进行对比,结果表明,所建立的本构模型能够很好地预测6013铝合金的流变应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐徐
李落星
叶拓
李荣启
关键词:  铝合金  动态压缩  组织演变  本构模型    
Abstract: The dynamic compression tests of 6013-T4 aluminum alloy were conducted at the temperatures of 25 ℃, 100 ℃, 200 ℃, 300 ℃ and 400 ℃, at the strain rates of 1 000 s-1, 2 000 s-1, 3 000 s-1, 4 000 s-1 and 5 000 s-1 by split Hopkinson pressure bar (SHPB), the true stress-true strain curves were obtained. The microstructure evolution of dynamic compression test specimens under different test conditions was observed by means of transmission electron microscopy (TEM). Results show that the flow stress of 6013 aluminum alloy has weak sensitivity to the strain rate but strong sensitivity to temperature. The effect of strain rate and temperature on microstructure of 6013 aluminum alloy is remarkable, the dislocation density increased with the increase of strain rate and decreased with the increase of temperature. Based on the experimental data, the constitutive parameters of the Johnson-Cook model of 6013 aluminum alloy were obtained and the constitutive model was built. The constitutive model can well predict the flow stress of 6013 aluminum alloy compared with the experimental results.
Key words:  aluminum alloy    dynamic compression    microstructure evolution    constitutive model
                    发布日期:  2018-05-08
ZTFLH:  TG146.2  
基金资助: 唐徐:男,1992年生,硕士研究生,研究方向为铝合金材料成形理论及轻量化结构设计E-mail:839675270@qq.com李荣启:通讯作者,男,1976年生,博士,助理教授,研究方向为轻量化构建优化设计、成形过程模拟仿真建模E-mail:214564077@qq.com
通讯作者:  李荣启,男,1976年生,博士,助理教授,研究方向为轻量化构建优化设计、成形过程模拟仿真建模 E-mail:214564077@qq.com   
作者简介:  唐徐:男,1992年生,硕士研究生,研究方向为铝合金材料成形理论及轻量化结构设计 E-mail:839675270@qq.com
引用本文:    
唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
TANG Xu,LI Luoxing,YE Tuo,LI Rongqi,. Dynamic Flow Stress and Microstructure Evolution of 6013-T4 Aluminum Alloy at Different Temperatures. Materials Reports, 2017, 31(10): 87-91.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.018  或          http://www.mater-rep.com/CN/Y2017/V31/I10/87
1 Ma H, Huang L, Tian Y, et al. Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy[J]. Mater Sci Eng A,2014,606:233.
2 Liu W J, Zhong L P. Status of heat treatment process for 6××× series aluminum alloys[J]. Mater Rev,2012,26(S1):137(in Chinese).
刘文静, 钟利萍. 6×××铝合金热处理工艺的研究概况[J]. 材料导报,2012,26(专辑19):137.
3 Xue X G, Zhang S Q. Study on properties of 6013 aluminium alloy extruded shapes[J]. Aluminium Fabrication,2003,26(2):46(in Chinese).
薛学功, 章四琪. 6013 铝合金挤压型材性能的研究[J]. 铝加工,2003,26(2):46.
4 Liu Z D, Wang G, Feng Y C, et al. High-strain-rate constitutive parameters of 6061 aluminum alloys[J]. Mining Metall Eng,2011,31(6):120(in Chinese).
刘再德, 王冠, 冯银成, 等. 6061铝合金高应变速率本构参数研究[J]. 矿冶工程,2011,31(6):120.
5 Peng Y, Wang G, Zhu T, et al. Dynamic mechanical behaviors of 6082-T6 aluminum alloy[J]. Adv Mech Eng,2013(12):878016.
6 Bedir F. Modeling approach and plastic deformation analysis of 6063 aluminum alloy during compression at elevated temperatures[J]. Mater Des,2013,49:953.
7 Zhou G P, Chang Z L, Chen S, et al. Mechanical property and microstructure of Mg-Li alloys under high strain rate impact load[J]. Rare Metal Mater Eng,2012,41(3):514(in Chinese).
邹广平, 唱忠良, 陈思, 等. 冲击载荷作用下 Mg-Li 合金的力学性能及显微组织[J]. 稀有金属材料与工程,2012,41(3):514.
8 Zhu Yao. Experimental research on mechanical properties of AA 7055 aluminum alloys at different temperatures and strain rates[D]. Harbin: Harbin Institute of Technology,2010(in Chinese).
朱耀. AA7055 铝合金在不同温度及应变率下力学性能的实验研究[D]. 哈尔滨:哈尔滨工业大学,2010.
9 Gao Z G, Zhang X M, Chen M A, et al. Effect of temperature on dynamic yield stress and microstructure of 2519A aluminum alloy at high strain rate[J]. Rare Metal Mater Eng,2009,38(5):881(in Chinese).
高志国, 张新明, 陈明安, 等. 温度对 2519A 铝合金高应变速率下动态屈服应力及显微组织的影响[J]. 稀有金属材料与工程,2009,38(5):881.
10 Weng Shuchu. Study on the dynamic microstructural evolution of the 7150 aluminum alloy during hot deformation[D]. Changsha: Hunan University,2012(in Chinese).
翁舒楚. 7150 铝合金热变形过程中动态组织演变规律研究[D]. 长沙:湖南大学,2012.
11 Liu M, Jiang T, Jun W, et al. Aging behavior and mechanical pro-perties of 6013 aluminum alloy processed by severe plastic deformation[J]. Trans Nonferrous Metals Soc China,2014,24(12):3858.
12 Lee W S, Chen T H, Lin C F, et al. Impact deformation behaviour and dislocation substructure of Al-Sc alloy[J]. J Alloys Compd,2010,493(1):580.
13 Lee W S, Chen T H. Rate-dependent deformation and dislocation substructure of Al-Sc alloy[J]. Scr Mater,2006,54(8):1463.
14 Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook constitutive model[J]. Appl Mathematics Mechanics,2014,35(2):219(in Chinese).
柳爱群, 黄西成. 高应变率变形的 Johnson-Cook 动态本构模型参数识别方法[J]. 应用数学和力学,2014,35(2):219.
15 Wu Y F, Li S H, Hou B, et al. Dynamic flow stress characteristics and constitutive model of aluminum 7075-T651[J]. Chinese J Nonferrous Metals,2013(3):658(in Chinese).
武永甫, 李淑慧, 侯波, 等. 铝合金 7075-T651 动态流变应力特征及本构模型[J]. 中国有色金属学报,2013(3):658.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[3] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[4] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[5] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[6] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[7] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[8] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[9] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[10] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[11] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[12] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[13] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[14] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[15] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed