Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 82-86    https://doi.org/10.11896/j.issn.1005-023X.2017.010.017
  材料研究 |
静磁场深冷处理对铝黄铜组织和性能的影响*
王宏明,储强泽,李桂荣,程江峰,朱弋
江苏大学材料科学与工程学院, 镇江 212013
Effect of Simultaneous Magnetic Field and Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of Aluminum-brass
WANG Hongming, CHU Qiangze, LI Guirong, CHENG Jiangfeng, ZHU Yi
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013
下载:  全 文 ( PDF ) ( 1248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对铝黄铜进行静磁场条件下不同时间的深冷处理,并与初始试样和同时间单独深冷试样进行对比分析,结果表明静磁场能够进一步提高铝黄铜的强韧性。在T=24 h时,MDCT试样的强韧性最好,其抗拉强度为602.5 MPa,延伸率为7.2%,较初始样分别提高了6.4%和53.2%,较DCT24试样分别提高3.1%和28.6%。分析原因在于从深冷回复到室温过程中铝黄铜发生了回复再结晶,起到了细晶强化作用;同时基于磁致塑性效应,位错运动灵活性增加,有助于提高延伸率和塑性变形能力。另外,静磁场在深冷过程中起到抑制铝黄铜α→β相转化和促进γ相转变的作用,使得MDCT试样平均晶粒尺寸较DCT试样大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王宏明
储强泽
李桂荣
程江峰
朱弋
关键词:  静磁场  深冷  铝黄铜  晶粒转动  微观组织  力学性能    
Abstract: The effect of simultaneous magnetic field and deep cryogenic treatment on the structure and mechanical properties of aluminum brass subjected to deep cryogenic treatment was investigated. The results show that the static magnetic field can further improve the strength and toughness of the aluminum-brass. When T=24 h, the test samples named MDCT (magnetized-deep cryogenically treated samples ) have the best tensile strength (602.5 MPa) and elongation (7.2%) which increase by 6.4% and 53.2% compared with the initial sample, and increase by 3.1% and 28.6% respectively compared with DCT (deep cryogenically treated samples). The reason for the property improvement is that during the reversion of test sample from deep cryogenic condition to room temperature, the dynamic recrystallization occurs, which play an important role in grain refinement strengthening effect. At the same time, based on the magnetoplasticity effect, it is easier for the dislocation to move which is beneficial to improve the capability of elongation and plastic deformation. In addition, under the condition of static magnetic field, the conversion rate of α-phase to β-phase in Al-brass has been reduced, and the conversion rate of γ-phase increased. Besides, the average grain size of MDCT is bigger than DCT.
Key words:  static magnetic field    deep cryogenic    aluminum brass    grain rotation    microstructure    mechanical property
发布日期:  2018-05-08
ZTFLH:  TG135.1  
基金资助: *国家自然科学基金(51371091;51174099)
作者简介:  王宏明:男,1974年生,博士,副教授,主要从事先进金属材料方面的研究E-mail:ujswang@sina.com
引用本文:    
王宏明,储强泽,李桂荣,程江峰,朱弋. 静磁场深冷处理对铝黄铜组织和性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 82-86.
WANG Hongming, CHU Qiangze, LI Guirong, CHENG Jiangfeng, ZHU Yi. Effect of Simultaneous Magnetic Field and Deep Cryogenic Treatment on the Microstructure and Mechanical Properties of Aluminum-brass. Materials Reports, 2017, 31(10): 82-86.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.017  或          https://www.mater-rep.com/CN/Y2017/V31/I10/82
1 Akhbarizadeh A, Shafyei A, Golozar M A. Effects of cryogenic treatment on wear behavior of D6 tool steel [J].Mater Des,2009,30(6):3259.
2 Gao Y,Nakata K, Nagatsuka K, et al. Microstructures and mecha-nical properties of friction stir welded brass/steel dissimilar lap joints at various welding speeds [J].Mater Des,2016,90(15):1018.
3 Lu Yue, Ma Ru, Wang Yinong. Texture evolution and recrystallization behaviors of Cu-Ag alloys subjected tocryogenic rolling [J]. Trans Nonferr Met Soc China,2015,25(9):2948.
4 李桂荣,王宏明. 材料电磁过程[M]. 镇江:江苏大学出版社,2014.
5 Amin Akhbarizadeh, Kamran Amini, Sirus Javadpour. Effect of simultaneous magnetic field and deep cryogenic heat treatment on the microstructure of 1.2080 tool steel [J]. Mater Des,2012,35(15):484.
6 Amin Akhbarizadeh, Kamran Amini, Sirus Javadpour. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel [J]. Mater Des,2012,41(12):114.
7 Huang Qicheng, Zhong Yunbo, Ren Zhongming, et al. The study of copper deposit surface morphology and texture under the strong magnetic field [J]. Rare Metal Mater Eng,2006,35(6):381(in Chinese).
黄琦晟,钟云波,任忠鸣,等. 强磁场下铜电沉积层表面形貌及织构的研究 [J].稀有金属材料与工程,2006,35(6):381.
8 Teng Jie, Liu Fang, Jiang Yong, et al. Investigation on deep cryogenic treatment of copper [J].Heat Treat Met,2008,33(4):49(in Chinese).
滕杰,刘芳,姜勇,等.紫铜的深冷处理 [J].金属热处理,2008,33(4):49.
9 Chen Ding, Li Wenxian. The grain rotation of aluminum and aluminum alloy after cryogenic treatment [J]. J Central South University of Technology,2000,31(6):544(in Chinese).
陈鼎,黎文献.深冷处理下铝和铝合金的晶粒转动 [J].中南工业大学学报,2000,31(6):544.
10 Li Guirong,Li Yueming,Wang Fangfang,et al. Microstructure and performance of solid TC4 titanium alloy subjected to the high pulsed magnetic field treatment [J]. Chinese J Nonferrous Met,2015,25(2):330(in Chinese).
李桂荣,李月明,王芳芳,等.脉冲磁场处理对TC4钛合金显微组织及力学性能的影响 [J].中国有色金属学报,2015,25(2):330.
11 宛德福,马兴隆.磁性物理 [M].成都:电子工业出版社,1999.
12 Song W L, Lee C H, Choi B. Sliding wear behavior of magnetorheological fluid for brass with and without magnetic field [J]. Trans Nonferrous Met Soc China,2013,23(2):400.
13 Huang Yunzhan,Jin Fangwei. The influence of cryogenic treatment on the microstructure and mechanical properties of copper alloy[J]. Heat Treat Met,2001,26(7):5(in Chinese).
黄云战,晋芳伟.深冷处理对铜合金组织和性能的影响[J].金属热处理,2001,26(7):5.
14 Brodovoy A V, Brodovoy V A, Skryshevsky V A. Influence of magnetic field on structural defects in Si and GaAs [J]. Appl Surf Sci,2004,225:170.
15 Wang Hongming,Li Peisi,Zhen Rui,et al. Mechanism of high pulsed magnetic field treatment of the plasticity of aluminum matrix composites [J]. Acta Phys Sin,2015,64(8):87(in Chinese).
王宏明,李沛思,郑瑞,等. 强脉冲磁场冲击处理对铝基复合材料塑性的影响机制 [J].物理学报,2015,64(8):87.
16 Golovin Y I. Magnetoplastic effect in solid [J]. Phys Solid State,2004,46(5):460.
17 Alshits V I, Darinskaya E V,Kazakova O L,et al.Magnetoplastic effect in nonmagnetic crystals [J].Mater Sci Eng A,1997,234-236:61.
[1] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[12] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[13] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[14] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[15] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed