Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 87-91    https://doi.org/10.11896/j.issn.1005-023X.2017.010.018
  材料研究 |
6013-T4铝合金不同温度下的动态流变应力及组织演变
唐徐1,2,李落星1,2,叶拓1,2,李荣启1,2
1 湖南大学汽车车身先进设计制造国家重点实验室, 长沙 410082;
2 湖南大学机械与运载工程学院, 长沙 410082
Dynamic Flow Stress and Microstructure Evolution of 6013-T4 Aluminum Alloy at Different Temperatures
TANG Xu1,2, LI Luoxing1,2, YE Tuo1,2, LI Rongqi1,2
1 The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分离式霍普金森(SHPB)压杆装置进行6013-T4铝合金动态压缩试验,获得温度为25 ℃、100 ℃、200 ℃、300 ℃、400 ℃,应变速率为1 000 s-1、2 000 s-1、3 000 s-1、4 000 s-1、5 000 s-1条件下材料的真应力-真应变曲线,并通过透射电子显微镜(TEM)观测了6013-T4铝合金在不同变形条件下的组织演变。结果表明:6013铝合金有明显的温度敏感性,但是对应变速率的敏感性较弱。应变速率和温度对6013铝合金微观组织的影响显著,位错密度随应变速率的升高而增大,随温度的升高而减小。基于实验数据,求得了6013铝合金Johnson-Cook模型的本构参数并建立其本构模型。与实验结果进行对比,结果表明,所建立的本构模型能够很好地预测6013铝合金的流变应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐徐
李落星
叶拓
李荣启
关键词:  铝合金  动态压缩  组织演变  本构模型    
Abstract: The dynamic compression tests of 6013-T4 aluminum alloy were conducted at the temperatures of 25 ℃, 100 ℃, 200 ℃, 300 ℃ and 400 ℃, at the strain rates of 1 000 s-1, 2 000 s-1, 3 000 s-1, 4 000 s-1 and 5 000 s-1 by split Hopkinson pressure bar (SHPB), the true stress-true strain curves were obtained. The microstructure evolution of dynamic compression test specimens under different test conditions was observed by means of transmission electron microscopy (TEM). Results show that the flow stress of 6013 aluminum alloy has weak sensitivity to the strain rate but strong sensitivity to temperature. The effect of strain rate and temperature on microstructure of 6013 aluminum alloy is remarkable, the dislocation density increased with the increase of strain rate and decreased with the increase of temperature. Based on the experimental data, the constitutive parameters of the Johnson-Cook model of 6013 aluminum alloy were obtained and the constitutive model was built. The constitutive model can well predict the flow stress of 6013 aluminum alloy compared with the experimental results.
Key words:  aluminum alloy    dynamic compression    microstructure evolution    constitutive model
发布日期:  2018-05-08
ZTFLH:  TG146.2  
基金资助: 唐徐:男,1992年生,硕士研究生,研究方向为铝合金材料成形理论及轻量化结构设计E-mail:839675270@qq.com李荣启:通讯作者,男,1976年生,博士,助理教授,研究方向为轻量化构建优化设计、成形过程模拟仿真建模E-mail:214564077@qq.com
通讯作者:  李荣启,男,1976年生,博士,助理教授,研究方向为轻量化构建优化设计、成形过程模拟仿真建模 E-mail:214564077@qq.com   
作者简介:  唐徐:男,1992年生,硕士研究生,研究方向为铝合金材料成形理论及轻量化结构设计 E-mail:839675270@qq.com
引用本文:    
唐徐,李落星,叶拓,李荣启,. 6013-T4铝合金不同温度下的动态流变应力及组织演变[J]. 材料导报编辑部, 2017, 31(10): 87-91.
TANG Xu,LI Luoxing,YE Tuo,LI Rongqi,. Dynamic Flow Stress and Microstructure Evolution of 6013-T4 Aluminum Alloy at Different Temperatures. Materials Reports, 2017, 31(10): 87-91.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.018  或          https://www.mater-rep.com/CN/Y2017/V31/I10/87
1 Ma H, Huang L, Tian Y, et al. Effects of strain rate on dynamic mechanical behavior and microstructure evolution of 5A02-O aluminum alloy[J]. Mater Sci Eng A,2014,606:233.
2 Liu W J, Zhong L P. Status of heat treatment process for 6××× series aluminum alloys[J]. Mater Rev,2012,26(S1):137(in Chinese).
刘文静, 钟利萍. 6×××铝合金热处理工艺的研究概况[J]. 材料导报,2012,26(专辑19):137.
3 Xue X G, Zhang S Q. Study on properties of 6013 aluminium alloy extruded shapes[J]. Aluminium Fabrication,2003,26(2):46(in Chinese).
薛学功, 章四琪. 6013 铝合金挤压型材性能的研究[J]. 铝加工,2003,26(2):46.
4 Liu Z D, Wang G, Feng Y C, et al. High-strain-rate constitutive parameters of 6061 aluminum alloys[J]. Mining Metall Eng,2011,31(6):120(in Chinese).
刘再德, 王冠, 冯银成, 等. 6061铝合金高应变速率本构参数研究[J]. 矿冶工程,2011,31(6):120.
5 Peng Y, Wang G, Zhu T, et al. Dynamic mechanical behaviors of 6082-T6 aluminum alloy[J]. Adv Mech Eng,2013(12):878016.
6 Bedir F. Modeling approach and plastic deformation analysis of 6063 aluminum alloy during compression at elevated temperatures[J]. Mater Des,2013,49:953.
7 Zhou G P, Chang Z L, Chen S, et al. Mechanical property and microstructure of Mg-Li alloys under high strain rate impact load[J]. Rare Metal Mater Eng,2012,41(3):514(in Chinese).
邹广平, 唱忠良, 陈思, 等. 冲击载荷作用下 Mg-Li 合金的力学性能及显微组织[J]. 稀有金属材料与工程,2012,41(3):514.
8 Zhu Yao. Experimental research on mechanical properties of AA 7055 aluminum alloys at different temperatures and strain rates[D]. Harbin: Harbin Institute of Technology,2010(in Chinese).
朱耀. AA7055 铝合金在不同温度及应变率下力学性能的实验研究[D]. 哈尔滨:哈尔滨工业大学,2010.
9 Gao Z G, Zhang X M, Chen M A, et al. Effect of temperature on dynamic yield stress and microstructure of 2519A aluminum alloy at high strain rate[J]. Rare Metal Mater Eng,2009,38(5):881(in Chinese).
高志国, 张新明, 陈明安, 等. 温度对 2519A 铝合金高应变速率下动态屈服应力及显微组织的影响[J]. 稀有金属材料与工程,2009,38(5):881.
10 Weng Shuchu. Study on the dynamic microstructural evolution of the 7150 aluminum alloy during hot deformation[D]. Changsha: Hunan University,2012(in Chinese).
翁舒楚. 7150 铝合金热变形过程中动态组织演变规律研究[D]. 长沙:湖南大学,2012.
11 Liu M, Jiang T, Jun W, et al. Aging behavior and mechanical pro-perties of 6013 aluminum alloy processed by severe plastic deformation[J]. Trans Nonferrous Metals Soc China,2014,24(12):3858.
12 Lee W S, Chen T H, Lin C F, et al. Impact deformation behaviour and dislocation substructure of Al-Sc alloy[J]. J Alloys Compd,2010,493(1):580.
13 Lee W S, Chen T H. Rate-dependent deformation and dislocation substructure of Al-Sc alloy[J]. Scr Mater,2006,54(8):1463.
14 Liu A Q, Huang X C. Identification of high-strain-rate material parameters in dynamic Johnson-Cook constitutive model[J]. Appl Mathematics Mechanics,2014,35(2):219(in Chinese).
柳爱群, 黄西成. 高应变率变形的 Johnson-Cook 动态本构模型参数识别方法[J]. 应用数学和力学,2014,35(2):219.
15 Wu Y F, Li S H, Hou B, et al. Dynamic flow stress characteristics and constitutive model of aluminum 7075-T651[J]. Chinese J Nonferrous Metals,2013(3):658(in Chinese).
武永甫, 李淑慧, 侯波, 等. 铝合金 7075-T651 动态流变应力特征及本构模型[J]. 中国有色金属学报,2013(3):658.
[1] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[2] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[7] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[8] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[9] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[10] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[11] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[12] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[13] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[14] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[15] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed