Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23060085-7    https://doi.org/10.11896/cldb.23060085
  金属与金属基复合材料 |
强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟
蔡佳思1,2, 刘湘波1, 王新元1, 魏艳红1,2,*
1 南京航空航天大学材料科学与技术学院,南京 211106
2 南京航空航天大学无锡研究院,江苏 无锡 214100
Simulation of Microstructure Evolution During Solidification Process in Laser Welded Molten Pool of Al-Cu Alloy Under Forced Flow
CAI Jiasi1,2, LIU Xiangbo1, WANG Xinyuan1, WEI Yanhong1,2,*
1 School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Wuxi Research Institute, Nanjing University of Aeronautics and Astronautics, Wuxi 214100, Jiangsu, China
下载:  全 文 ( PDF ) ( 26381KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 建立一个元胞自动机-有限差分-格子玻尔兹曼耦合模型(CA-FD-LB coupled model),对Al-Cu合金激光焊接熔池凝固全过程枝晶的演化开展模拟研究。模拟结果表明,顶盖驱动流一级、二级涡位置和文献结果吻合得非常好;等温纯扩散条件下,枝晶尖端生长速度与过冷度的关系和Lipton-Gilicksman-Kurz (LGK)模型的结果吻合良好。对流作用下枝晶的生长形貌呈现出不对称性,是因为枝晶上游尖端在流动挤压冲刷作用下溶质扩散层变窄,浓度梯度变大,生长得到促进,下游反之。此外,对流加速凝固过程,缩短了凝固时间。焊缝柱状晶平均长度的模拟和实验测量结果分别为117 μm和91 μm,相对误差约为28.6%,可见耦合模型可靠。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡佳思
刘湘波
王新元
魏艳红
关键词:  铝合金  激光焊  组织模拟  元胞自动机  格子玻尔兹曼    
Abstract: In this work, a cellular automaton-finite difference-lattice Boltzmann (CA-FD-LB) coupled model was developed to simulate dendrite evolution during the whole solidification process of the Al-Cu alloy welding pool. The first and second vortices' locations in the lid driven flow were simulated. And the results show a high agreement with the results that have been published in the literature. The quantitative relationship between the growth rate of dendritic tip and the undercooling under isothermal pure diffusion circumstances exhibits outstanding agreement with the predictions of the Lipton Glicksman Kurz (LGK) model. In the presence of external flow, the growth morphology of dendrites demonstrates asymmetry because the solute diffusion layer at the upstream tip of the dendrites becomes narrower under the effect of squeezing of flow, resulting in a larger concentration gradient that promotes growth. Conversely, the downstream region exhibits the opposite behavior. Additionally, flow enhances the solidification process, leading to a shorter solidification time. The results of simulation and experiment are 117 μm and 91 μm respectively, and the relative error is about 28.6%, showing the reliability of the coupled model.
Key words:  aluminum alloy    laser welding    microstructure simulation    cellular automaton    lattice Boltzmann
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TG 456.7  
基金资助: 国家自然科学基金 (52275341);南京航空航天大学博士研究生跨学科创新基金(KXKCXJJ202307)
通讯作者:  *魏艳红,通信作者,南京航空航天大学材料科学与技术学院教授、博士研究生导师。1986年哈尔滨工业大学焊接专业本科毕业,1989年哈尔滨工业大学焊接专业硕士毕业,1993年哈尔滨工业大学焊接专业博士毕业。目前主要从事焊接数据库及专家系统开发、焊接过程有限元建模仿真、焊缝组织与力学性能预测、电弧增材成形预测等方面的研究工作。发表论文200余篇,包括Acta Materialia、Journal of Materials Processing Technology、International Journal of Heat and Mass Transfer、Computational Materials Science、Optics and Laser Technology等。nuaadw@126.com   
作者简介:  蔡佳思,2019年6月于南京航空航天大学获得工学学士学位。现为南京航空航天大学材料科学与技术学院博士研究生,在魏艳红教授的指导下进行研究。目前主要研究领域为铝合金焊接熔池凝固过程微观组织模拟。
引用本文:    
蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
CAI Jiasi, LIU Xiangbo, WANG Xinyuan, WEI Yanhong. Simulation of Microstructure Evolution During Solidification Process in Laser Welded Molten Pool of Al-Cu Alloy Under Forced Flow. Materials Reports, 2024, 38(19): 23060085-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060085  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23060085
1 Fu Y S, Lu C, Ye X J, et al. Journal of Mechanical Engineering, 2023, 59(5), 291 (in Chinese).
付艳恕, 卢聪, 叶小军, 等. 机械工程学报, 2023, 59(5), 291.
2 Lei Y F. Study on solidification process of welding pool under rapid cooling condition based on lattice boltzmann method. Master's Thesis, Hebei University of Technology, China, 2019 (in Chinese).
雷云峰. 基于LBM的急冷条件下焊接熔池凝固过程的研究. 硕士学位论文, 河北工业大学, 2019.
3 Ma R. Simulation of microstructure evolution during welding solidification of nickel-based alloy. Ph.D. Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
马瑞. 镍基合金焊接熔池凝固过程微观组织模拟. 博士学位论文, 哈尔滨工业大学, 2010.
4 Tong X, Beckermann C, Karma A, et al. Physical Review E, DOI: 10. 1103/PhysRevE. 63. 061601.
5 Zhang X F, Zhao J Z. Acta Metallurgica Sinica, 2012, 48(5), 615.
6 Zhu M F, Dai T, Lee S Y, et al. Science in China Series E-Technological Sciences, 2005, 48(3), 241.
7 Zhu M F, Dai T, Lee S Y, et al. Computers & Mathematics with Applications, 2008, 55(7), 1620.
8 Sun D K, Zhu M F, Yang Z R, et al. Acta Physica Sinica, 2009, 58(S1), 285 (in Chinese).
孙东科, 朱鸣芳, 杨朝蓉, 等. 物理学报, 2009, 58(S1), 285.
9 Wu W, Sun D K, Dai T, et al. Acta Physica Sinica, 2012, 61(15), 39 (in Chinese).
吴伟, 孙东科, 戴挺, 等. 物理学报, 2012, 61(15), 39.
10 Miller W, Succi S, Mansutti D, et al. Physical Review Letters, 2001, 86(16), 3578.
11 Gu C, Wei Y H, Zhan X H, et al. Science and Technology of Welding and Joining, 2017, 22(1), 47.
12 Wei Y H, Zhan X H, Dong Z B, et al. Science and Technology of Welding and Joining, 2007, 12(2), 138.
13 Wei Y H, Zhan X H, Dong X B, et al. Transactions of the China Welding Institution, 2009, 30(3), 13.
14 He Y L, Wang Y, Li Q. Lattice Boltzmann method: theory and applications, Science Press, China, 2009, pp.53.
何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用, 科学出版社, 2009, pp.53.
15 Zhan X H. Simulation of dendritic grain growth in weld pool of nickel-chromium binary alloy. Ph.D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese).
占小红. Ni-Cr二元合金焊接熔池枝晶生长模拟. 博士学位论文, 哈尔滨工业大学, 2008.
16 Rappaz M, Desbiolles J L, Gandin C A, et al. Metallurgical and Meterials Transactions A, 1996, 27(3), 695.
17 Nastac L. Acta Materialia, 1999, 47(17), 4253.
18 Vanka S P. Journal of Computational Physics, 1986, 65(1), 138.
19 Ghia U, Ghia K N, Shin C T. Journal of Computational Physics, 1982, 48(3), 387.
20 Hou S L, Zou Q S, Chen S Y, et al. Journal of Computational Physics, 1994, 118(2), 329.
21 Zhou J C, Li R, Yang Y Y, et al. Foundry Technology, 2017, 38(5), 1088 (in Chinese).
周靖超, 李日, 杨莹莹, 等. 铸造技术, 2017, 38(5), 1088.
[1] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[2] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[3] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[4] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[5] 李昂, 曾一达, 李智勇, 贺荣, 郭正华, 陈玉华, 江一, 杨子睿. 双相钢与铝合金异种金属激光焊接技术研究进展[J]. 材料导报, 2024, 38(22): 23090075-9.
[6] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[7] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[8] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[9] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[10] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[11] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[12] 王梦强, 陈留刚, 孙红刚, 杜一昊, 司瑶晨, 李红霞. 镁铝合金添加剂对SiC-MgAl2O4材料显微结构和性能的影响[J]. 材料导报, 2024, 38(16): 23050121-6.
[13] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[14] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[15] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed