Simulation of Microstructure Evolution During Solidification Process in Laser Welded Molten Pool of Al-Cu Alloy Under Forced Flow
CAI Jiasi1,2, LIU Xiangbo1, WANG Xinyuan1, WEI Yanhong1,2,*
1 School of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2 Wuxi Research Institute, Nanjing University of Aeronautics and Astronautics, Wuxi 214100, Jiangsu, China
Abstract: In this work, a cellular automaton-finite difference-lattice Boltzmann (CA-FD-LB) coupled model was developed to simulate dendrite evolution during the whole solidification process of the Al-Cu alloy welding pool. The first and second vortices' locations in the lid driven flow were simulated. And the results show a high agreement with the results that have been published in the literature. The quantitative relationship between the growth rate of dendritic tip and the undercooling under isothermal pure diffusion circumstances exhibits outstanding agreement with the predictions of the Lipton Glicksman Kurz (LGK) model. In the presence of external flow, the growth morphology of dendrites demonstrates asymmetry because the solute diffusion layer at the upstream tip of the dendrites becomes narrower under the effect of squeezing of flow, resulting in a larger concentration gradient that promotes growth. Conversely, the downstream region exhibits the opposite behavior. Additionally, flow enhances the solidification process, leading to a shorter solidification time. The results of simulation and experiment are 117 μm and 91 μm respectively, and the relative error is about 28.6%, showing the reliability of the coupled model.
通讯作者: *魏艳红,通信作者,南京航空航天大学材料科学与技术学院教授、博士研究生导师。1986年哈尔滨工业大学焊接专业本科毕业,1989年哈尔滨工业大学焊接专业硕士毕业,1993年哈尔滨工业大学焊接专业博士毕业。目前主要从事焊接数据库及专家系统开发、焊接过程有限元建模仿真、焊缝组织与力学性能预测、电弧增材成形预测等方面的研究工作。发表论文200余篇,包括Acta Materialia、Journal of Materials Processing Technology、International Journal of Heat and Mass Transfer、Computational Materials Science、Optics and Laser Technology等。nuaadw@126.com
蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
CAI Jiasi, LIU Xiangbo, WANG Xinyuan, WEI Yanhong. Simulation of Microstructure Evolution During Solidification Process in Laser Welded Molten Pool of Al-Cu Alloy Under Forced Flow. Materials Reports, 2024, 38(19): 23060085-7.
1 Fu Y S, Lu C, Ye X J, et al. Journal of Mechanical Engineering, 2023, 59(5), 291 (in Chinese). 付艳恕, 卢聪, 叶小军, 等. 机械工程学报, 2023, 59(5), 291. 2 Lei Y F. Study on solidification process of welding pool under rapid cooling condition based on lattice boltzmann method. Master's Thesis, Hebei University of Technology, China, 2019 (in Chinese). 雷云峰. 基于LBM的急冷条件下焊接熔池凝固过程的研究. 硕士学位论文, 河北工业大学, 2019. 3 Ma R. Simulation of microstructure evolution during welding solidification of nickel-based alloy. Ph.D. Thesis, Harbin Institute of Technology, China, 2010 (in Chinese). 马瑞. 镍基合金焊接熔池凝固过程微观组织模拟. 博士学位论文, 哈尔滨工业大学, 2010. 4 Tong X, Beckermann C, Karma A, et al. Physical Review E, DOI: 10. 1103/PhysRevE. 63. 061601. 5 Zhang X F, Zhao J Z. Acta Metallurgica Sinica, 2012, 48(5), 615. 6 Zhu M F, Dai T, Lee S Y, et al. Science in China Series E-Technological Sciences, 2005, 48(3), 241. 7 Zhu M F, Dai T, Lee S Y, et al. Computers & Mathematics with Applications, 2008, 55(7), 1620. 8 Sun D K, Zhu M F, Yang Z R, et al. Acta Physica Sinica, 2009, 58(S1), 285 (in Chinese). 孙东科, 朱鸣芳, 杨朝蓉, 等. 物理学报, 2009, 58(S1), 285. 9 Wu W, Sun D K, Dai T, et al. Acta Physica Sinica, 2012, 61(15), 39 (in Chinese). 吴伟, 孙东科, 戴挺, 等. 物理学报, 2012, 61(15), 39. 10 Miller W, Succi S, Mansutti D, et al. Physical Review Letters, 2001, 86(16), 3578. 11 Gu C, Wei Y H, Zhan X H, et al. Science and Technology of Welding and Joining, 2017, 22(1), 47. 12 Wei Y H, Zhan X H, Dong Z B, et al. Science and Technology of Welding and Joining, 2007, 12(2), 138. 13 Wei Y H, Zhan X H, Dong X B, et al. Transactions of the China Welding Institution, 2009, 30(3), 13. 14 He Y L, Wang Y, Li Q. Lattice Boltzmann method: theory and applications, Science Press, China, 2009, pp.53. 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用, 科学出版社, 2009, pp.53. 15 Zhan X H. Simulation of dendritic grain growth in weld pool of nickel-chromium binary alloy. Ph.D. Thesis, Harbin Institute of Technology, China, 2008 (in Chinese). 占小红. Ni-Cr二元合金焊接熔池枝晶生长模拟. 博士学位论文, 哈尔滨工业大学, 2008. 16 Rappaz M, Desbiolles J L, Gandin C A, et al. Metallurgical and Meterials Transactions A, 1996, 27(3), 695. 17 Nastac L. Acta Materialia, 1999, 47(17), 4253. 18 Vanka S P. Journal of Computational Physics, 1986, 65(1), 138. 19 Ghia U, Ghia K N, Shin C T. Journal of Computational Physics, 1982, 48(3), 387. 20 Hou S L, Zou Q S, Chen S Y, et al. Journal of Computational Physics, 1994, 118(2), 329. 21 Zhou J C, Li R, Yang Y Y, et al. Foundry Technology, 2017, 38(5), 1088 (in Chinese). 周靖超, 李日, 杨莹莹, 等. 铸造技术, 2017, 38(5), 1088.