Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 193-197    https://doi.org/10.11896/j.issn.1005-023X.2017.023.029
  第一届先进胶凝材料研究与应用学术会议 |
镍渣/偏高岭土基地聚合物的制备与表征*
张长森1, 朱宝贵1, 2, 李杨1, 3, 冯桢哲1, 2, 王毓1, 胡志超1, 2
1 盐城工学院材料科学与工程学院,盐城 224051;
2 江苏大学材料科学与工程学院,镇江 212000;
3 常州大学材料科学与工程学院,常州 213164
Preparation and Characterization of Nickel Slag/Metakaolin Based Geopolymer
ZHANG Changsen1, ZHU Baogui1, 2, LI Yang1, 3, FENG Zhenzhe1, 2, WANG Yu1, HU Zhichao1, 2
1 School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng 224051;
2 School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212000;
3 School of Materials Science and Engineering, Changzhou University, Changzhou 213164
下载:  全 文 ( PDF ) ( 1357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以工业固体废弃物镍渣和偏高岭土为原料,以水玻璃为激发剂,在相同稠度下制备镍渣/偏高岭土基地聚合物。研究了镍渣种类和掺量对地聚合物力学性能和体积变化的影响,测定了地聚合物的碱溶出情况,并利用XRD、SEM-EDS对地聚合物的矿物组成和微观形貌进行分析。结果表明:随着水淬镍渣掺量的增大,地聚合物的抗压强度先增大后降低,在镍渣掺量为50%、液固比为0.45时,地聚合物的抗压强度最大,28 d达到58.8 MPa;而随着风冷镍渣掺量的增大,地聚合物的强度逐渐降低。此外,水淬镍渣/偏高岭土基地聚合物的体积变化主要表现为膨胀,而风冷镍渣/偏高岭土基地聚合物表现为收缩。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张长森
朱宝贵
李杨
冯桢哲
王毓
胡志超
关键词:  镍渣  偏高岭土  地聚合物  体积变化  力学性能    
Abstract: A series of nickel slag/metakaolin based geopolymer were prepared under the same consistency using industrial solid waste nickel slag and metakaolin as raw materials, water glass as activator. The effect of nickel slag type and content on the mechanical properties and volume change of the geopolymer were studied. The alkali dissolution of geopolymer was characterized by pH analyzer, the mineral composition and microstructure of the geopolymer were analyzed by XRD and SEM-EDS. With the increase of the amount of water-hardening nickel slag, the compressive strength of geopolymer first increased and then decreased. The compressive strength of the geopolymer with 50% nickel slag and 0.45 liquid/solid ratio reached the maximum value (58.8 MPa(28 d)). The incorporation of air quench reduced the compressive strength. In addition, water-hardening nickel slag/metakaolin geopolymer had a expansion behavior, air quench nickel/metakaolin geopolymer had a shrinkage behavior.
Key words:  nickel slag    metakaolin    geopolymer    volume change    mechanical properties
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528.041  
基金资助: *国家自然科学基金(51672236); 江苏省生态建材与环保装备协同创新中心和江苏省新型环保重点实验室联合资助(CP201506)
作者简介:  张长森:男,1957年生,教授,硕士研究生导师,主要从事无机非金属材料和固废利用等方面的研究 E-mail:zcs@ycit.cn
引用本文:    
张长森, 朱宝贵, 李杨, 冯桢哲, 王毓, 胡志超. 镍渣/偏高岭土基地聚合物的制备与表征*[J]. 《材料导报》期刊社, 2017, 31(23): 193-197.
ZHANG Changsen, ZHU Baogui, LI Yang, FENG Zhenzhe, WANG Yu, HU Zhichao. Preparation and Characterization of Nickel Slag/Metakaolin Based Geopolymer. Materials Reports, 2017, 31(23): 193-197.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.029  或          http://www.mater-rep.com/CN/Y2017/V31/I23/193
1 Li X M, Shen M, Wang C, et al. Current situation and development of comprehensive utilization of nickel slag[J]. Mater Rev: Rev, 2017, 31(3): 100 (in Chinese).
李小明, 沈苗, 王翀, 等. 镍渣资源化利用现状及发展趋势分析[J]. 材料导报:综述篇, 2017, 31(3): 100.
2 Young Cheol Choi, et al. Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Constr Build Mater, 2015, 99: 279.
3 Wu Q S, Guang J M, Zhu H J, et al. Mechanochemical effect of nickel slag and its impact on reactive activity[J]. Mater Sci Technol, 2016,24(3): 22(in Chinese).
吴其胜, 光鉴淼, 诸华军, 等. 镍渣机械力化学效应及其对反应活性的影响[J].材料科学与工艺, 2016,24(3): 22.
4 Feng Z Z, Wu Q S, Zhang C S, et al. Preparation and properties of nickel slag based foam glass[J]. Bull Chin Ceram Soc, 2017, 36(5):1740 (in Chinese).
冯桢哲, 吴其胜, 张长森, 等.镍渣基泡沫玻璃的制备及其性能研究[J]. 硅酸盐通报, 2017, 36(5): 1740.
5 Yang Tao, Yao Xiao, Zhang Zuhua. Geopolymer prepared with high-magnesium nickel slag:Characterization of properties and microstructure[J]. Constr Build Mater, 2014, 59(6): 188.
6 Davidovits J. The ancient egyptian pyramids-concrete or rock[J]. Concr Int, 1987, 12: 928.
7 Davidovits J. Geopolymers and geopolymeric materials[J]. J Thermal Anal, 1998, 35(2): 429.
8 Weng Luqian, Kwesi Sagoe-Crentsil. Effects of aluminates on the formation of geopolymers[J]. Mater Sci Eng B, 2005, 117(2): 163.
9 Bakharev T. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing[J]. Cem Concr Res, 2005, 35(6): 1224.
10 Majidi B. Geopolymer technology, from fundamentals to advanced applications: A review[J]. Mater Technol, 2009, 24(2): 79.
11 Tanakorn Phoo-ngernkham,Akihiro Maegawa,Naoki Mishima,et al. Effects of sodium hydroxide and sodium silicate solutionson compressive and shear bond strengths of FA-GBFS geopolymer[J]. Constr Build Mater, 2015, 91: 1.
12 Geng Junjun, Zhou Min, Li Yixin, et al. Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation[J]. Constr Build Mater, 2017,153: 185.
13 Ye X W, Ma X, He J P, et al. The studies on microstructure of geopolymer[J]. Fly Ash Comprehensive Utilization, 2016(2):44 (in Chinese).
叶雄伟, 马骁, 何巨鹏, 等. 地聚合物微观结构研究进展[J].粉煤灰综合利用, 2016(2):44.
14 Ma T B, Yang X T, Zhang X H, et al. Research progress of geopolymer cementitious materials[J]. Adhesion, 2015(10): 90 (in Chinese).
马腾博, 杨旭彤, 张小会, 等. 地聚合物胶凝材料的研究进展[J]. 粘接, 2015(10): 90.
15 Zhang Z H, Zhu H J, Zhou C H, et al. Geopolymer from kaolin in China: An overview[J]. Appl Clay Sci, 2016, 119: 31.
16 Lian H Z, Zhang Z L, Wang Y H. Rapid evaluation on activity of pozzolanic materials[J]. J Build Mater, 2001,4(3): 299(in Chinese).
廉慧珍, 张志龄, 王英华. 火山灰质材料活性的快速评定方法[J]. 建筑材料学报, 2001,4(3): 299.
17 Zhang Zuhua, John L Provis, Andrew Reid, et al. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence[J]. Cem Concr Res, 2014, 64(10): 30.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed