Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 187-192    https://doi.org/10.11896/j.issn.1005-023X.2017.023.028
  第一届先进胶凝材料研究与应用学术会议 |
Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*
赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德
后勤工程学院化学与材料工程系,重庆 401311
Influence of Na2SO4·10H2O on Hydration and Hardening of Magnesium Potassium Phosphate Cement
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, ZHANG Hansong, HU Zhide
Department of Chemical and Material Engineering,Logistic Engineering University, Chongqing 401311
下载:  全 文 ( PDF ) ( 3941KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸钾镁水泥凝结硬化过快及水化放热集中的问题严重制约着其大规模工程应用,相变材料的吸热储能功能为解决这一问题提供新途径。研究了无机水合盐Na2SO4·10H2O(NS)对磷酸钾镁水泥(MKPC)水化温升、工作性能和抗压强度的影响,并结合XRD、FT-IR、SEM等分析手段及其水化放热速率曲线探究了NS对MKPC性能的影响机制。结果表明:NS的溶解和相变过程吸收大量热,同时释放出结晶水,降低了MKPC体系中Mg2+、PO3-4和H+的溶出速率及浓度,MKPC系统内部水化反应速率降低,凝结时间延长,流动度增大,水化放热和水化温升变得更加平缓,在水化早期,MKPC的硬化体强度随NS掺量增加略有降低。在一定的NS掺量(≤4%)内,MKPC水化产物的结晶度提高,后期强度稳定增长,掺有2%NS的MKPC的28 d强度将高于基准组。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵思勰
晏华
汪宏涛
李云涛
张寒松
胡志德
关键词:  Na2SO4·10H2O;  磷酸钾镁水泥  相变吸热  水化温升  水化产物  结晶度    
Abstract: Too fast setting and hardening rate as well as concentrative hydration heat of magnesium potassium phosphate cements restrict its extensive engineering application seriously. Endothermic energy storage of phase change material offers a new way for solving the problems. Effect of inorganic phase change material Na2SO4· 10H2O(NS) on hydration temperature,work perfor-mances and compressive strength of magnesium potassium phosphate cement(MKPC) were investigated. Moreover, influence mechanism of NS on properties of MKPC were researched with the aids of XRD, FT-IR, SEM analyses and hydration heat release rate. The result showed that solution and phase change process of NS absorbed a multitude of hydration heat and released crystalliferous water, which attenuated solution rate and concentration of Mg2+, PO3-4 and H+ in system of MKPC. So rate of interior hydration of MKPC reaction diminished, causing prolonged setting time, increased fluidity, and mild hydration heat release and temperature rise. In early hydration process, with NS content increase, early strength of MKPC diminish slightly. Under a certain content of NS (≤ 4%), the crystallinity of hydration products increased, and the long-term strength of MKPC increased steadily. 28 d compressive strength of MKPC with 2% NS was higher than that of the reference group.
Key words:  Na2SO4·10H2O    magnesium potassium phosphate cement    phase change decalescence    hydrate calefactive    hydration products    crystallinity
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TB321  
基金资助: *国家自然科学基金(51272283)
通讯作者:  胡志德:男,讲师,主要从事智能材料的制备、性能研究 E-mail:huzd6503@163.com   
作者简介:  赵思勰:男,1994年生,硕士研究生,主要从事相变材料和磷酸镁水泥研究 E-mail:1527794185@qq.com
引用本文:    
赵思勰, 晏华, 汪宏涛, 李云涛, 张寒松, 胡志德. Na2SO4·10H2O对磷酸钾镁水泥水化硬化的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 187-192.
ZHAO Sixie, YAN Hua, WANG Hongtao, LI Yuntao, ZHANG Hansong, HU Zhide. Influence of Na2SO4·10H2O on Hydration and Hardening of Magnesium Potassium Phosphate Cement. Materials Reports, 2017, 31(23): 187-192.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.028  或          http://www.mater-rep.com/CN/Y2017/V31/I23/187
1 Wang H T,Qian J S, Wang J G. Review of magnesia-phosphate cement[J]. Mater Rev, 2005,12(2):46(in Chinese).
汪宏涛, 钱觉时, 王建国. 磷酸镁水泥的研究进展[J]. 材料导报, 2005,12(2):46.
2 Yang Q, Zhu B, Wu X. Characteristics and durability test of magnesium phosphate cement-based material for rapid repair of concrete[J]. Mater Struct, 2000,33(4):229.
3 Li J, Zhang W, Cao Y. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement[J]. Constr Building Mater, 2014,5(8):122.
4 Ding Z, Li Z. High-early-strength magnesium phosphate cement with fly ash[J]. ACI Mater J, 2005,102(6):375.
5 Buj I, Torras J, Rovira M, et al. Leaching behavior of magnesium phosphate cements containing high quantities of heavy metals[J]. J Hazard Mater, 2010,175(1):789.
6 Li C M, Wang P M, Wang A, et al. Effect of admixtures on properties of magnesium phosphate cement and the mechanism[J]. Concrete, 2015(1):115(in Chinese).
李春梅, 王培铭, 王安, 等. 掺合料对磷酸镁水泥的性能影响及机理研究[J]. 混凝土, 2015(1):115.
7 Ji F, Jiao B X, Qiu T. The effects of urea on setting time and hydration exothermic of magnesium phosphate cement[J]. China Concr Cem Products, 2013(5):1(in Chinese).
吉飞, 焦宝祥, 丘泰. 尿素对磷酸镁水泥凝结时间和水化放热的影响[J]. 混凝土与水泥制品, 2013(5):1.
8 Gao G B, Qian C X, Zhuang Y, et al. Research on use of phase change materials for reduction of internal temperature rise of mass concrete[J]. J Hydroelectric Eng, 2010, 29(1):197(in Chinese).
高桂波, 钱春香, 庄园,等. 用相变材料降低大体积混凝土内部温升的研究[J]. 水力发电学报, 2010,29(1):197.
9 Shi W, Hou J P. Temperature control properties of mass concrete with phase change material in different condition[J]. J Building Mater, 2013, 16(6):1063(in Chinese).
史巍, 侯景鹏. 不同条件下相变控温大体积混凝土的控温性能[J]. 建筑材料学报, 2013,16(6):1063.
10Zhou S X, Rong M G, Zuo S, et al. Temperature control properties of composite phase change materials in mass concrete[J]. J East China Jiaotong University, 2013,30(4):30(in Chinese).
周双喜, 荣茂阁, 左晟,等. 复合相变储能材料在大体积混凝土中的控温性能[J]. 华东交通大学学报, 2013,30(4):30.
11Wang J. Study on the basic throries and preparation of phase change and temperature self-control concrete[D]. Wuhan: Wuhan University of Technology, 2011(in Chinese).
王军. 相变控温混凝土的理论基础研究和制备[D]. 武汉: 武汉理工大学, 2011.
12Li Y T,Yan H,Wang H T,et al. Preparation of composite phase change materials and its effect on the hydration heat of magnesium phosphate cement[J]. J Funct Mater, 2016, 47(7):07211(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 复合相变材料的制备及其对磷酸镁水泥水化热的影响[J].功能材料, 2016, 47(7):07211.
13 Li Y T, Yan H, Wang H T, et al. Effect of paraffin/expand grap-hite composite phase change material on the hydration performance of magnesium phosphate cement[J]. Bull Chin Ceram Soc, 2016,35(9):3007(in Chinese).
李云涛, 晏华, 汪宏涛, 等. 石蜡/膨胀石墨复合相变材料对磷酸镁水泥水化性能的影响[J]. 硅酸盐通报, 2016,35(9):3007.
14Yang J M, Qian C X, Jiao B X, et al. Effect of NaH2PO4?10H2O on hydration hardening of potassium and magnesium phosphate cement[J]. J Building Mater, 2011,14(3):299(in Chinese)
杨建明, 钱春香, 焦宝祥, 等. NaH2PO4?10H2O对磷酸镁水泥水化硬化特性的影响[J]. 建筑材料学报,2011,14(3):299..
15Qi Z Q. Research on shrinkage performance and reduction measures of magnesium phosphate cement[D].Chongqing: Logistical Engineering University, 2015(in Chinese).
齐召庆.磷酸镁水泥石收缩性能及减缩措施研究[D]. 重庆:后勤工程学院, 2015.
16Jiang Zichao.Research on influencing factors and mechanism of permeability of magnesium phosphate cement[D]. Chongqing: Logistical Engineering University, 2017(in Chinese).
姜自超. 磷酸镁水泥渗透性影响因素及机理研究[D]. 重庆: 后勤工程学院, 2017.
17Chang Y, Shi C J, Yang N, et al. Effect of fineness of magnesium oxide on properties of magnesium potassium phosphate cement[J]. J Chin Ceram Soc, 2013,41(4):492(in Chinese).
常远, 史才军, 杨楠, 等. 不同细度 MgO 对磷酸钾镁水泥性能的影响[J]. 硅酸盐学报, 2013,41(4):492.
18Lai Z Y, Lai X, Shi J, et al. Effect of Zn2+ on the early hydration behavior of potassium phosphate based magnesium phosphate cement[J]. Constr Building Mater, 2016,129:70.
19Dai Fengle. Study on the hydration mechanism phosphate cement based on thermodynamics[D]. Chongqing: Logistical Engineering University, 2017(in Chinese).
戴丰乐. 基于热动力学的磷酸镁水泥水化机理研究[D]. 重庆: 后勤工程学院, 2017.
[1] 杨刘琨, 潘志华, 徐赛赛, 刘劲松. 微胶囊在修补砂浆中延迟释放早强剂的应用及性能分析[J]. 材料导报, 2019, 33(2): 246-250.
[2] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[3] 余鑫, 于诚, 冉千平, 刘加平. 基于Rietveld外标法的水泥及其水化产物定量分析[J]. 材料导报, 2019, 33(14): 2337-2342.
[4] 张晓佳, 张高展, 孙道胜, 刘开伟. 水泥基材料硫酸盐侵蚀机理的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1174-1180.
[5] 何旸, 钱文勋, 张燕迟, 蔡跃波, 王新. 高速水流下空蚀热效应对水泥水化产物的破坏[J]. 材料导报, 2018, 32(24): 4281-4285.
[6] 张洁, 张建建, 孙国文, 杨建明, 汤青青. 三种固废微粉对磷酸钾镁水泥浆体早期性能影响及作用机理[J]. 材料导报, 2018, 32(20): 3553-3561.
[7] 李振国, 刘博, 吴运强, 王博, 郭江涛, 余四文. 碱式硫酸镁水泥耐酸腐蚀性能研究[J]. 材料导报, 2018, 32(16): 2733-2737.
[8] 刘 娜,姜自超,汪宏涛,戴丰乐. 磷酸钾镁水泥水化产物六水磷酸钾镁(K-Struvite)定量分析[J]. 《材料导报》期刊社, 2017, 31(24): 45-49.
[9] 赵思勰, 晏华, 汪宏涛, 李云涛, 戴丰乐, 薛明, 胡志德. 复合无机水合盐对磷酸镁水泥水化及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(23): 156-162.
[10] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed