Please wait a minute...
材料导报  2018, Vol. 32 Issue (23): 4125-4134    https://doi.org/10.11896/j.issn.1005-023X.2018.23.014
  无机非金属及其复合材料 |
铜渣粉作为混凝土掺合料的研究进展
何伟1, 周予启2, 王强1
1 清华大学土木工程系,北京 100084;
2 中建一局集团建设发展有限公司,北京 100102
Advances in Copper Slag as Concrete Admixture
HE Wei1, ZHOU Yuqi2, WANG Qiang1
1 Department of Civil Engineering, Tsinghua University, Beijing 100084;
2 China Construction First Group Construction and Development Co., Ltd., Beijing 100102
下载:  全 文 ( PDF ) ( 2176KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜渣是铜冶炼和精炼过程的副产物,以每产1 t铜副产2.2 t铜渣计算,2017年全球铜渣排放量达到了5 170万t。但目前的铜渣处理仍以堆放为主,不仅占用了大量土地,重金属成分对堆放地也造成了严重的环境污染。铜渣,特别是水淬铜渣中含有较多的玻璃体,用作混凝土掺合料可以替代粉煤灰和矿渣,解决某些地区掺合料紧缺的状况。本文归纳总结了铜渣粉对混凝土工作性、力学性能和耐久性的影响,分析了铜渣作为掺合料使用时的环境安全性,提出了铜渣作为掺合料使用应注意的问题,为铜渣粉在混凝土行业中规模化应用提供了参考。
近年的研究成果表明,水淬铜渣中的玻璃体含量高、活性更好,而缓冷铜渣的玻璃体含量虽低,但仍有一定的活性。由于存在活性低和重金属成分高的问题,铜渣粉对混凝土工作性、力学性能和耐久性的影响比矿渣、粉煤灰等常见掺合料复杂得多,阻碍了铜渣粉作为掺合料在混凝土中的应用。
虽然存在不同观点,但多数研究成果表明铜渣粉可起到降低放热量、改善工作性及减少用水量的作用,同时也会产生泌水率增加的问题。由于活性偏低、重金属成分较高,铜渣粉的缓凝作用明显,不过大掺量使用所引起的凝结时间延长问题在多数研究中是可控的。铜渣粉导致混凝土早期强度不足,可通过添加激发剂、提高细度、降低水灰比等方式予以缓解和控制。铜渣粉对混凝土强度的负面影响会随龄期延长逐渐减轻,甚至在一段时间后对强度有利。此外,铜渣粉还能提高混凝土弹性模量并减少收缩,对抗断裂性能也无明显不利影响。但以不同指标评价混凝土脆性时,铜渣粉的作用还存在较大的争议。由于可促使毛细孔隙等有害孔隙数量减少,铜渣粉可使混凝土的吸水速率和吸水量降低,从而使耐久性等级有所改善。除优化孔隙结构外,铜渣粉与Ca(OH)2反应生成C-S-H凝胶,可改善过渡区,提高混凝土抗碳化、抗氯离子渗透性和抗硫酸盐侵蚀的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何伟
周予启
王强
关键词:  铜渣  混凝土  掺合料    
Abstract: Copper slag (CS) is the by-product of the smelting and refining process of copper. It has been estimated that the production of 1 t blister copper generates 2.2 t slag, and the global copper slag emissions reached 51.7 million tonnes in 2017. As the most common treatment for CS, the landfill not only occupies a great quantity of soils, but also lead to severe ecological environment pollution all around due to the heavy metals in CS. CS, especially the water-quenched one, contains large vitreous fraction, which can be used as the concrete admixture instead of fly ash, slag and other mineral admixtures to relieve the shortage of admixture in some areas. This review summarizes the influence of CS powder on the workability, mechanical properties and durability of concrete, analyzes the environmental safety of copper slag as admixture, and points out several issues that should be paid attention to in the use of copper slag as admixture. It provides a reference for large scale application of copper slag powder in concrete industry.
Recent researches revealed that there is high vitreous fraction in water-quenched CS with favorable activity. The vitreous content in cooling CS is low, nevertheless, it presents acceptable activity. Owing to the high heavy metal composition and low activity, the impact of CS on the workability, mechanical properties and durability of concrete is much more complicated than that of common admixtures like slag and fly ash, which hinders the application of copper slag powder as admixture in concrete.
Although there are different opinions about the effect of CS, it is generally believed that the utilization of CS powder as admixtures can reduce heat release, water consumption and improve workability, while increase the bleeding rate. Thanks to the low activity and high heavy metal content, the CS powder shows notable retarding effect, yet the extension of setting time caused by using large amount of CS powder can be controlled in most cases. The insufficient early strength of concrete resultes from CS powder can be alleviated by adding activators, improving fineness, and reducing W/B ratio. The negative effect of the CS powder on the strength can gradually ease with age, and even it is beneficial to concrete strength after a certain period of time. Besides, CS powder can also improve the elastic modulus of concrete and reduce shrinkage, and has no obvious adverse effect on the fracture resistance of concrete. However, the role of CS powder on the brittleness of concrete is still controversial. CS powder is helpful to reduce harmful pores like capillary pores and further reduce the water absorption rate and amount, which result in a improved durability of concrete. In the hydration reaction of CS powder, owing to the increment of C-S-H gel formation, the interfacial transition zone is optimized, and the anti-carbonation, sulfate resistance and chloride ion penetration resistance of concrete are improved.
Key words:  copper slag    concrete    mineral admixture
               出版日期:  2018-12-10      发布日期:  2018-12-20
ZTFLH:  TU528.041  
基金资助: 环境模拟与污染控制国家重点联合实验室开放基金(16K06ESPCT)
作者简介:  何伟:男,1987年生,博士,主要从事固废建材资源化方面的研究 E-mail:heweiah@mail.tsinghua.edu.cn;王强:通信作者,男,1983年生,博士,副教授,主要从事混凝土材料方面的研究 E-mail:w-qiang@tsinghua.edu.cn
引用本文:    
何伟, 周予启, 王强. 铜渣粉作为混凝土掺合料的研究进展[J]. 材料导报, 2018, 32(23): 4125-4134.
HE Wei, ZHOU Yuqi, WANG Qiang. Advances in Copper Slag as Concrete Admixture. Materials Reports, 2018, 32(23): 4125-4134.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.23.014  或          http://www.mater-rep.com/CN/Y2018/V32/I23/4125
1 International Energy Agency.Cement technology roadmap 2009-carbon emssions reductions up to 2050[R].Paris: International Energy Agency,2009.
2 Hoenig V, Hoppe H, Emberger B.Carbon capture technology-options and potentials for the cement industry[R].Duesseldorf: European Cement Research Academy,2007.
3 U.S.Geological Survey. Mineral commodity summaries-2018[R].U.S.: Geological Survey,2018.
4 Schneider M.Developments in the global cement market[J].Cement International,2014,12:35.
5 Von B, Siddique R, Khan M I.Supplementary cementing materials[M].Heidelberg: Springer,2011.
6 Boakye D M.Durability and strength assessment of copper slag concrete[D].Johannesburg: University of the Witwatersrand,2014.
7 Gorai B, Jana R K, Premchand. Characteristics and utilisation of copper slag—A review[J].Resources Conservation and Recycling,2003,39(4):299.
8 Das B M, Tarquin A J, Jones A D, et al.Geotechnical properties of copper slag[R].Washington, D.C.: Transportation Research Record,1983.
9 Ayano T, Sakata K.Durability of concrete with copper slag fine aggregate[C]∥5th CANMET/ACI International Conference on Durability of Concrete. Tokyo, Japan,2000:141.
10 Khanzadi M, Behnood A.Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate[J].Construction and Building Materials,2009,23(6):2183.
11 Moura W, Masuero A, Molin D, et al.Concrete performance with admixtures of electrical steel slag and copper concerning mechanical properties[C]∥2nd CANMET/ACI International Conference on High-Performance. Pairs,1999:81.
12 宋军伟,陈俊.铜矿渣掺合料对混凝土力学性能影响试验研究[J].混凝土与水泥制品,2013(8):81.
13 Al-Jabri K S, Taha R A, Al-Hashmi A, et al. Effect of copper slag and cement by-pass dust addition on mechanical properties of concrete[J].Construction and Building Materials,2006,20(5):322.
14 Alnuaimi A.Effects of copper slag as a replacement for fine aggregate on the behavior and ultimate strength of reinforced concrete slender columns[J].Journal of Engineering Research,2012,9(2):90.
15 Wu W, Zhang W, Ma G.Optimum content of copper slag as a fine aggregate in high strength concrete[J].Materials and Design,2010,31(6):2878.
16 Elshkaki A, Graedel T E, Ciacci L, et al.Copper demand, supply, and associated energy use to 2050[J].Global Environmental Change,2016,39:305.
17 Li F.The pozzolanic activity of granulated copper slay[J].Journal of Fuzhou University (Natural Sciener),1999(2):87(in Chinese).
李锋. 水淬铜渣的火山灰活性[J].福州大学学报(自然科学版),1999(2):87.
18 Douglas E, Mainwaring P R.Hydration and pozzolanic activity of nonferrous slags[J].American Ceramic Society Bulletin,1985,64(5):700.
19 Baragano J R, Rey P.The study of a non-traditional pozzolan: Copper slags[C]∥7th International Congress on the Chemistry of Cement. Paris,1980:37.
20 Pan W C, Wang T D.A study on the components and cementitious properties of activated copper slag[J].Journal of South China University of Technology (Natural Science),1993(1):91(in Chinese).
潘伟才,王天頔.活化铜矿渣的组成及胶凝特性的研究[J].华南理工大学学报(自然科学版),1993(1):91.
21 Najimi M, Pourkhorshidi A R.Properties of concrete containing copper-slag-waste[J].Magazine of Concrete Research,2011,63(8):605.
22 Rojas M I S D, Rivera J, Frías M, et al. Use of recycled copper slag for blended cements[J].Journal of Chemical Technology and Biotechnology,2008,83(3):209.
23 Shi C, Meyer C, Behnood A, et al.Utilization of copper slag in cement and concrete[J].Resources Conservation and Recycling,2008,52(10):1115.
24 Zhao K, Cheng X L, Qi Y H, et al.Characteristics of water quenched copper-containing slag and separation of iron and silicon from it[J].The Chinese Journal of Process Engineering,2012,12(1):38(in Chinese).
赵凯,程相利,齐渊洪,等.水淬铜渣的矿物学特征及其铁硅分离[J].过程工程学报,2012,12(1):38.
25 Alp I, Deveci H, Süngün H.Utilization of flotation wastes of copper slag as raw material in cement production[J].Journal of Hazardous Materials,2008,159(2-3):390.
26 Zhang L N.Study on selective precipitation valuable constituent in copper smelting slags[D].Shenyang: Northeastern University,2005(in Chinese).
张林楠. 铜渣中有价组分的选择性析出研究[D].沈阳:东北大学,2005.
27 Liu G, Zhu R.Study of China’s current copper slag on the use of resources[J]. Mining and Metallurgy,2008,17(3):59(in Chinese).
刘纲,朱荣.当前我国铜渣资源利用现状研究[J].矿冶,2008,17(3):59.
28 Zhang L N, Zhang L, Wang M Y, et al.Treatment and resourceful disposal of copper slag[J].Multipurpose Utilization of Mineral Resources,2005(5):22(in Chinese).
张林楠,张力,王明玉,等.铜渣的处理与资源化[J].矿产综合利用,2005(5):22.
29 Murari K, Siddique R, Jain K K.Use of waste copper slag, a sustainable material[J].Journal of Material Cycles and Waste Management,2015,17(1):13.
30 Li F.Study on the theory and application of water-quenched copper slag as concrete component[D].Xi’an: Xi’an University of Architecture and Technology,1990(in Chinese).
李锋. 水淬铜渣作为混凝土组分的理论和应用研究[D].西安:西安建筑科技大学,1990.
31 Emery J J.Manitoba slags, deposits, characterization, modifications, potential utilization[R].Toronto: Geotechnical Engineering Limited,1986.
32 Hughes M L, Haliburton T A.Use of zinc smelter waste as highway construction material[C]∥52nd Annual Meeting of the Highway Research Board. Washington, USA,1973:16.
33 Tixier R.Microstructural development and sulfate attack modeling in blended cement-based materials[D].Phoenix: Arizona State University,2000.
34 Nie Q, Cheng L, Niu W G.Effect of different admixtures on cement hydration heat[J].Coal Ash,2007,19(3):3(in Chinese).
聂强,陈磊,牛文阁.不同掺和料对水泥水化热的影响[J].粉煤灰,2007,19(3):3.
35 侯贵华,沈晓冬,许仲梓.掺杂氧化铜的硅酸三钙早期水化过程的研究[C]∥第九届全国水泥和混凝土化学及应用技术会议.广州,2005:282.
36 Wang X, Yan B L, Wang L, et al.The research on the mechanism of solidification and stability of ettringite doped Cr6+ and Cu2+[J].Bulletin of the Chinese Ceramic Society,2013,32(2):12(in Chinese).
王昕,颜碧兰,汪澜,等.钙矾石对Cr6+和Cr2+的固化及稳定性[J].硅酸盐通报,2013,32(2):12.
37 Afshoon I, Sharifi Y.Ground copper slag as a supplementary cementing material and its influence on the fresh properties of self-consolidating concrete[J].The IES Journal Part A: Civil and Structural Engineering,2014,7(4):229.
38 Kolovos K G, Barafaka S, Kakali G, et al.CuO and ZnO addition in the cement raw mix: Effect on clinkering process and cement hydration and properties[J].Ceramics Silikaty,2005,49(3):205.
39 Najimi M, Sobhani J, Pourkhorshidi A R.Durability of copper slag contained concrete exposed to sulfate attack[J].Construction and Building Materials,2011,25(4):1895.
40 Arliguie G, Grandet J.Etude de l’hydratation du ciment en presence de zinc influence de la teneur en gypse[J].Cement and Concrete Research,1990,20(3):346.
41 Yousuf M, Mollah A, Hess T R, et al.An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems—Portland type V with zinc[J].Cement and Concrete Research,1993,23(4):773.
42 Ma B G, Wu B, Li X G, et al.Influence of Zn2+ on the hydration properties of the sulphoaluminate and ordinary Portland cement[J].Journal of Wuhan University of Technology,2010(14):30(in Chinese).
马保国,吴贝,李相国,等.Zn2+对硫铝酸盐和硅酸盐水泥水化性能的影响[J].武汉理工大学学报,2010(14):30.
43 施惠生,施慧聪.硫化物对水泥基材料中锌的控制研究[J].水泥,2006(2):15.
44 Ouki S K, Hills C D.Microstructure of Portland cement pastes containing metal nitrate salts[J].Waste Management,2002,22(2):147.
45 Sahu R M, Sadangi M, Kuchya S P, et al.Use of copper slag[J].International Cement Review,2011(2011):58.
46 Onuaguluchi O, Eren Ö.Some properties of cement-copper tailings pastes and mortars[C]∥International Conference on Solid Waste-Moving Towards Sustainable Resource Management. Hong Kong, China,2011:276.
47 Onuaguluchi O, Gharagozloo A, Iravanian A.Utilization of copper processing waste as partial replacement of cement in concrete[C]∥9th International Congress on Advances in Civil Engineering. Trabzon, Turkey,2010:1.
48 Onuaguluchi O, Eren Ö.Copper tailings as a potential additive in concrete: Consistency, strength and toxic metal immobilization properties[J].Indian Journal of Engineering and Materials Sciences,2012,19(2):79.
49 Douglas E, Mainwaring P R, Hemmings R T.Pozzolanic properties of Canadian non-ferrous slags[J].Journal of the American Concrete Institute,1986,83(2):342.
50 Taeb A, Faghihi S.Utilization of copper slag in the cement industry[J].ZKG International,2002,55(4):98.
51 Ravindrarajah R S, Tam C T.Properties of concrete containing low-calcium fly ash under hot and humid climate[C]∥3rd International Conference Proceedings. Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. Trondheim, Norway,1989:139.
52 Zain M F M, Islam M N, Radin S S, et al. Cement-based solidification for the safe disposal of blasted copper slag[J].Cement and Concrete Composites,2004,26(7):845.
53 Moura W A, Gonçalves J P, Lima M B L. Copper slag waste as a supplementary cementing material to concrete[J].Journal of Mate-rials Science,2007,42(7):2226.
54 Al-Jabri K, Shoukry H.Use of nano-structured waste materials for improving mechanical, physical and structural properties of cement mortar[J].Construction and Building Materials,2014,73:636.
55 Brindha D, Sureshkumar P.Buckling strength of RCC column incorporating copper lag as partial replacement for cement[C]∥ National Conference on Emerging Trends in Civil Engineering (NCETCE-10). Tiruchengod, India,2010:146.
56 Lee D U, Jung Y J, Kim Y S.A study on the corrosion resistance of concrete containing copper slag[J].Journal of the Korea Institute for Structural Maintenance and Inspection,2007,11(5):189.
57 Song J W, Fang K H, Zhu J L, et al.Experimental study on strength and brittleness of copper slag concrete[J].Journal of Wuhan University of Technology,2013,35(10):33(in Chinese).
宋军伟,方坤河,朱街禄,等.铜矿渣混凝土强度与脆性试验研究[J].武汉理工大学学报,2013,35(10):33.
58 Tixier R, Arino-Moreno A, Mobasher B.Properties of cementitious mixture modified by copper slag[C]∥Symposium: HH, Structure Property Relationships in Hardened Cement Paste and Composites. Tucson, American,1996.
59 邹伟斌,胡新明.铜矿渣、石灰石、矿渣复合硅酸盐水泥[J].江西建材,1998(2):27.
60 Mobasher B, Devaguptapu R, Arino A M.Effect of copper slag on the hydration of blended cementitious mixtures[C]∥Materials for the New Millennium. Washington, American,1996:1677.
61 戴映清,严生,沈晓东.铜渣道路水泥的研究[J].江苏建材,1998(2):29.
62 Singh J, Singh J, Kaur M.Copper slag blended cement: An environmental sustainable approach for cement industry in India[J].Current World Environment,2016,11(1):186.
63 Mohsenian H, Sohrabi M R.Compering the effect of using the copper blast furnace slag and Taftan pozzolan on concrete properties[C]∥3rd International Conference on Concrete and Development. Tehran, Iran,2009:181.
64 Ariño A M, Mobasher B.Effect of ground copper slag on strength and toughness of cementitious mixes[J].ACI Materials Journal,1999,96(1):68.
65 Moosberg H, Lagerblad B, Forssberg E.The use of by-products from metallurgical and mineral industries as filler in cement-based materials[J].Waste Management and Research the Journal of the International Solid Wastes and Public Cleansing Association Iswa,2003,21(1):29.
66 Yin H, Dong B Q, Ding Z, et al.Study of the water absorbtivity and permeability for concrete[J].Low Temperature Architecture Technology,2009,31(2):4(in Chinese).
殷慧,董必钦,丁铸,等.混凝土的渗水、吸水特性研究[J].低温建筑技术,2009,31(2):4.
67 赵铁军. 混凝土渗透性[M].北京:科学出版社,2006.
68 Wu Z W.An approach to the recent trends of concrete science and technology[J].Journal of the Chinese Ceramic Society,1979(3):82(in Chinese).
吴中伟. 混凝土科学技术近期发展方向的探讨[J].硅酸盐学报,1979(3):82.
69 Alexander M G, Jaufeerally H, Mackechnie J R.Structural and durability properties of concrete made with Corex slag[M].Cape Town: University of Cape Town,2003.
70 Brown P W.An evaluation of the sulfate resistance of cements in a controlled environment[J].Cement and Concrete Research,1982,11(5):719.
71 Alter H.The composition and environmental hazard of copper slags in the context of the Basel Convention[J].Resources Conservation and Recycling,2005,43(4):353.
72 Environment Agency of GOV.UK. Guidance on the classification and assessment of waste[R].Bristol: Environment Agency of GOV.UK,2015.
73 Vitkova M, Ettler V, Mihaljevic M, et al.Effect of sample preparation on contaminant leaching from copper smelting slag[J].Journal of Hazardous Materials,2011,197(6):417.
74 Johnson E A, Oden L L, Sanker P E.Results of EPA extraction procedure toxicity test applied to copper reverberatory slags (Report of investigations 8648)[R].Reno: U.S Bureau of Mines,1982.
75 Lim T T, Chu J.Assessment of the use of spent copper slag for land reclamation[J].Waste Management and Research the Journal of the International Solid Wastes and Public Cleansing Association Iswa,2006,24(1):67.
76 Shanmuganathana P, Lakshmipathiraja P, Srikantha S, et al.Toxi-city characterization and long-term stability studies on copper slag from the ISASMELT process[J].Resources Conservation and Recycling,2008,52(4):601.
77 Jarosíková A, Ettler V, Mihaljevič M, et al.The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications[J].Journal of Environmental Management,2017,187:178.
78 Karamanov A, Aloisi M, Pelino M.Vitrification of copper flotation waste[J].Journal of Hazardous Materials,2007,140(1-2):333.
79 Gougar M L D, Scheetz B E, Roy D M. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review[J].Waste Management,1996,16(4):295.
80 Li X D, Poon C S, Sun H, et al.Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J].Journal of Hazardous Materials,2001,82(3):215.
81 Batchelor B.Overview of waste stabilization with cement[J].Waste Management,2006,26(7):689.
82 Rojas M I S D, Rivera J, Frías M, et al. Leaching characteristics of blended mortars made of copper slags[C]∥8th International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Las Vegas, USA,2004:925.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[9] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[10] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[11] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[12] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[13] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[14] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[15] 陈俊,张白,杨鸥,龙士国,许福,杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed