Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3401-3407    https://doi.org/10.11896/cldb.18090017
  无机非金属及其复合材料 |
微波热处理温度对尾矿微晶玻璃晶化过程及性能的影响
李红霞, 李保卫, 邓磊波, 徐鹏飞, 刘中兴
内蒙古科技大学,内蒙古自治区白云鄂博矿多金属资源综合利用重点实验室,包头 014010
Effects of Microwave Heat Treatment Temperature on Crystallization and Properties of Tailing-based Glass-Ceramics
LI Hongxia, LI Baowei, DENG Leibo, XU Pengfei, LIU Zhongxing
Key Laboratory of Integrated Exploitation of Bayan Obo Multi-metal Resources, Inner Mongolia University of Science and Technology, Baotou 014010
下载:  全 文 ( PDF ) ( 3490KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以金尾矿和铁尾矿为主要原料,采用熔融法制备了CaO-MgO-Al2O3-SiO2(CMAS)系基础玻璃,并在2.45 GHz多模腔微波炉中进行晶化处理,利用差热(DSC)分析、X射线衍射(XRD)分析、傅里叶红外光谱(FTIR)、拉曼光谱(Raman)、扫描电镜(SEM)和综合力学性能仪等测试手段,研究了微波热处理不同温度对CMAS系尾矿微晶玻璃显微结构及性能的影响。结果表明:采用微波法可以成功制得以透辉石(Mg0.6Fe0.2Al0.2)Ca-(Si1.5Al0.5)O6为主晶相的尾矿微晶玻璃,且随着热处理温度的升高,制得的微晶玻璃综合性能呈现先提高后降低的趋势。确定的最佳微波热处理制度为720 ℃保温20 min,此条件下所制备的微晶玻璃综合性能为:密度2.97 g/cm3,抗折强度264.62 MPa,耐酸性99.38%,耐碱性99.17%,弹性模量、剪切模量分别为109.83 GPa和45.39 GPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李红霞
李保卫
邓磊波
徐鹏飞
刘中兴
关键词:  微波  微晶玻璃  CMAS系  显微结构    
Abstract: CCaO-MgO-Al2O3-SiO2(CMAS)base glasses were prepared by the traditional melting-casting method using gold tailings and iron tailings as main materials, and crystallized in a 2.45 GHz multimode microwave cavity. The effect of microwave heat treatment temperature on the crystallization and properties was systematically investigated by differential thermal analysis (DSC),X-ray diffraction analysis (XRD),Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and universal mechanical properties tester, etc. The results show that: the tailing-based glass-ceramics with diopside(Mg0.6Fe0.2Al0.2)Ca(Si1.5Al1.5)O6 as the primary crystalline phase was successfully synthesized by microwave heat treatment technology. Moreover, the performance of the prepared glass-ceramics were remarkably improved with heat treatment temperature increasing. Optimum technology parameters is heat treatment at 720 ℃for 20 min. The prepared glass ceramics possess excellent comprehensive performance: density of 2.97 g/cm3, bending strength of 264.62 MPa, acid resistance of 99.38%, alkali resistance of 99.17%, elastic modulus of 109.83 GPa, and shear modulus of 45.39 GPa, respectively.
Key words:  tailings    glass-ceramic    CMAS    microstructure
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TQ174  
基金资助: 内蒙古自治区高等学校科学研究项目(NJZZ18141);内蒙古科技大学创新基金项目(2016QDL-B29);内蒙古自然科学基金项目(2018LH05021)
作者简介:  李红霞,内蒙古科技大学,助理研究员。2017年1月毕业于内蒙古工业大学,材料加工工程博士学位。主要从事微波冶金和微晶玻璃领域的研究。hongxialea@163.com
引用本文:    
李红霞, 李保卫, 邓磊波, 徐鹏飞, 刘中兴. 微波热处理温度对尾矿微晶玻璃晶化过程及性能的影响[J]. 材料导报, 2019, 33(20): 3401-3407.
LI Hongxia, LI Baowei, DENG Leibo, XU Pengfei, LIU Zhongxing. Effects of Microwave Heat Treatment Temperature on Crystallization and Properties of Tailing-based Glass-Ceramics. Materials Reports, 2019, 33(20): 3401-3407.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090017  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3401
1 Isa H. International Journal of the Physical Sciences, 2011, 6(30), 6691.2 Park Y J, Heo J. Ceramics International. 2002, 28(6), 689.3 Zhao T, Li B W, Gao Z Y, et al. Materials Science and Engineering B, 2010, 170(1-3), 22.4 Li B W, Deng L B, Zhang X F, et al. Journal of Non-Crystalline Solids, 2013, 380, 103.5 Li B W, Deng L B, Zhang X F, et al. International Journal of Applied Ceramic Technology, 2015, 12, E41.6 Li B W, Du Y S, Zhang X F, et al. Transactions of the Indian Ceramic Society, 2013, 72, 119.7 Li B W, Du Y S, Zhang X F, et al. Environmental Research, 2014, 34, 420.8 Kitchen H J, Vallance S R, Kennedy J L, et al. Chemical Reviews, 2013, 114(2), 1170.9 Ghasali E, Yazdani-rad R, Asadian K, et al. Journal of Alloys and Compounds, 2017, 690, 512.10 Giguere R J, Bray T L, Duncan S M. Tetrahedron Letters, 1986, 27(41), 4945.11 Mirzaei A, Neri G. Sensors and Actuators B: Chemical, 2016, 237, 749.12 Guo Y, Li J, Yuan Y, et al. Angewandte Chemie International Edition, 2016, 55(47), 14693.13 Rybakov K I, Olevsky E A, Krikun E V, et al. Journal of the American Ceramic Society, 2013, 96(4), 1003.14 Leonelli C, Mason T J. Chemical Engineering and Processing, 2010, 49(9), 885.15 Bhattacharya M, Basak T. Energy, 2016, 97, 306.16 Mishra R R, Sharma A K. Composites Part A: Applied Science and Manufacturing, 2016, 81, 78.17 Bykov V, Egorov S V, Eremeev A G, et al. Journal of Materials Proces-sing Technology, 2014, 214(2), 210.18 Katakam S, Krishna D, Kumar T. Materials Letters, 2003, 57, 2716.19 Hruby A. Czechoslovak Journal of Physics B, 1972, 22(11), 1187.20 Li B W, Li H X, Zhang X F, et al. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(12), 1342.21 Li H X, Li B W, Deng L B, et al. Journal of the European Ceramic So-ciety, 2018, 38, 2632.22 Tian J. Crystal chemistry of silicate, Wuhan University Press, China,2010(in Chinese).田键. 硅酸盐晶体化学,武汉大学出版社,201023 Weng S F, Xu Y Z. Fourier transform infrared spectroscopy analysis, Chemical Industry Press, China, 2005(in Chinese).翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析, 化学工业出版社, 2005.24 Yao S Y, Wang Z F, Han Y, et al. Transaction of Materials and Heat Treatment, 2013, 34(7), 22(in Chinese).姚树玉, 王宗峰, 韩野, 等.材料热处理学报, 2016, 34(7), 22.25 Ren X Z, Zhang P X, Liang X, et al. Journal of Materials Science and Engineering, 2007, 25(2), 197(in Chinese).任祥忠, 张培新, 梁讯, 等. 材料科学与工程学报, 2007, 25(2), 197.26 Atalay S, Adiguzel H I, Atalay F. Materials Science and Engineering, 2001, A304-306, 796.27 Che M, Védrine J C. In: Characterization of Solid Materials and Heterogeneous Catalysts: From Structure to Surface Reactivity, Wiley-VCH, 2012, pp.1075.28 Yadav A K, Singh P. RSC Advances, 2015, 5, 67583.29 Dickinson J E, Scarfe C M. Geochimica Et Cosmochimica Acta, 1990, 54, 1037.30 Furukawa T. The Journal of Chemical Physics, 1981, 75(7), 3226.31 McMillan P. American Mineralogist, 1984, 69, 645.32 Huang E, Chen C H, Huang T, et al. American Mineralogist, 2000, 85, 473.33 Wang R, Zhang B M. Spectroscopy and Spectral Analysis, 2010, 30(2), 376(in Chinese).王蓉, 张保民. 光谱学与光谱分析, 2010, 30(2), 376.34 Tulyaganov D U, Agathopoulos S, Ventura J M, et al. Journal of the European Ceramic Society,2006, 26(8),1463.35 Mernagh T P, Hoatson D M. Journal of Raman Spectroscopy, 1997, 28(9), 647.36 Li B W, Ouyang S L, Zhang X F, et al. Spectroscopy and Spectral Analysis, 2014, 34(7), 1869(in Chinese).李保卫,欧阳顺利,张雪峰,等. 光谱学与光谱分析, 2014, 34(7), 1869.
[1] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[2] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[3] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[4] 易帅, 曾鲁举, 邓丽娜, 薛飞, 谢金莉, 刘艳改, 房明浩, 吴小文, 黄朝晖. 液相浸渗法制备CaAl12O19/(MgAl2O4-Al2O3)复相陶瓷[J]. 材料导报, 2019, 33(18): 3166-3169.
[5] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[6] 李梦萱, 刘洪波, 刘见祥, 朱明燕, 王毅. 掺杂Yb3+的氟氧化物微晶玻璃的析晶特性及发光性能[J]. 材料导报, 2019, 33(16): 2644-2647.
[7] 王耿, 傅邱云, 张芦, 施浩, 田帆. 钡镧钛系高介低损耗微波介质陶瓷研究进展[J]. 材料导报, 2019, 33(13): 2151-2158.
[8] 沈韬, 柴鲜花, 孙淑红, 朱艳. 微波法制备铜锌锡硫的研究进展[J]. 材料导报, 2019, 33(13): 2159-2166.
[9] 田清波, 李春珍, 李海文, 王玥, 吕志杰. 云母微晶玻璃复合材料的研究进展[J]. 材料导报, 2019, 33(13): 2191-2196.
[10] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[11] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[12] 周军, 吴雷, 梁坤, 宋永辉, 张秋利. 微波技术在煤热解工艺中的应用现状[J]. 材料导报, 2019, 33(1): 191-197.
[13] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[14] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[15] 陈彬,万红,华叶. 高功率微波源用电子收集极材料:强流高能电子束轰击下的物理效应及对材料性能的要求*[J]. 《材料导报》期刊社, 2017, 31(7): 108-113.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed