Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3396-3400    https://doi.org/10.11896/cldb.18050192
  无机非金属及其复合材料 |
电纺制备ZrO2多孔纤维及其导热性能
康剑1,2, 崔帅1,2, 魏恒勇1,2, 卜景龙1,2, 崔燚1,2, 李慧1,2, 杨柳1,2, 罗婧1,2, 季文玲1,2
1 华北理工大学材料科学与工程学院, 唐山 063210
2 河北省无机非金属材料重点实验室, 唐山 063210
Preparation of ZrO2 Porous Fiber by Electrospinning and Its Thermal Conductivity
KANG Jian1,2, CUI Shuai1,2, WEI Hengyong1,2, BU Jinglong1,2, CUI Yi1,2, LI Hui1,2, YANG Liu1,2, LUO Jing1,2, JI Wenling1,2
1 College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063210
2 Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063210
下载:  全 文 ( PDF ) ( 2331KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用八水氯氧化锆为原料,六水硝酸钇为稳定剂,选取聚乙烯吡咯烷酮(PVP)为助纺剂,乙醇为溶剂,通过静电纺丝法制得了前驱体纤维,并将前驱体纤维经高温煅烧获得了ZrO2多孔纤维。采用XRD、FTIR、拉曼光谱和SEM等表征了纤维的物相及形貌,并测定了纤维的导热系数。结果表明,前驱体纤维经800 ℃煅烧后形成t-ZrO2物相,纤维直径约为180 nm,纤维内部出现孔结构,其BET比表面积为15.36 m2/g,平均孔径为8 nm。当前驱体纤维煅烧温度为1 000 ℃时,纤维中ZrO2晶体进一步发育,纤维直径约为270 nm,纤维中仍存在孔结构,BET比表面积为13.22 m2/g,平均孔径为9 nm。然而,当前驱体纤维煅烧温度为1 200 ℃时,纤维中孔道消失并发生烧结现象。因此,经过800 ℃、1 000 ℃和1 200 ℃煅烧所制备的纤维的导热系数逐渐增大,分别为0.092 9 W/(m·K)、0.095 1 W/(m·K)、0.106 8 W/(m·K)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
康剑
崔帅
魏恒勇
卜景龙
崔燚
李慧
杨柳
罗婧
季文玲
关键词:  静电纺丝  ZrO2多孔纤维  导热性能    
Abstract: In this paper, ZrOCl2·8H2O and Y2O3·6H2O were used as raw material and stabilizer, respectively. Polyvinylpyrrolidone (PVP) and ethanol were used as spinning aid and solvent, respectively. The ZrO2 porous fiber was obtained after the electrospinning precursor fibers were calcined at high temperature. The phase and morphology of fibers were characterized by XRD, FTIR, SRS and SEM, and the thermal conductivity of the fibers was also measured. The results showed that the precursor fiber transformed into t-ZrO2 fiber at 800 ℃, and the diameter was about 180 nm. Besides that, some pore structure appeared in the fibers, and their BET specific surface area was 15.36 m2/g, and the average pore diameter was 8 nm. The ZrO2 crystal in the fiber further developed and the fiber diameter became 270 nm when the calcination temperature increased to 1 000 ℃. In addition, some pore structure still existed in the fiber with the specific surface area of 13.22 m2/g and average pore diameter of 9 nm. However, when the calcination temperature is 1 200 ℃, the pores disappeared and the grain sintered in fibers. As a result, the thermal conductivity of the fiber calcined at 800 ℃, 1 000 ℃, 1 200 ℃ increased, and the values were 0.092 9 W/(m·K), 0.095 1 W/(m·K) and 0.106 8 W/(m·K), respectively.
Key words:  electrospinning    ZrO2 porous fiber    thermal conductivity
               出版日期:  2019-10-25      发布日期:  2019-08-30
ZTFLH:  TQ340.64  
基金资助: 国家自然科学基金(51302064;51472072);华北理工大学青年科学研究基金(Z201413)和华北理工大学杰出青年基金(JQ201712)
作者简介:  康剑,2018年4月毕业于华北理工大学,获得工学硕士学位。主要从事高温结构材料、超级电容器和多孔材料领域的研究。魏恒勇,2010年9月毕业于同济大学大学,获得材料学博士。研究方向:仿生材料,耐高温隔热材料,超级电容器,表面等离激元及吸波材料。why_why2000@163.com
引用本文:    
康剑, 崔帅, 魏恒勇, 卜景龙, 崔燚, 李慧, 杨柳, 罗婧, 季文玲. 电纺制备ZrO2多孔纤维及其导热性能[J]. 材料导报, 2019, 33(20): 3396-3400.
KANG Jian, CUI Shuai, WEI Hengyong, BU Jinglong, CUI Yi, LI Hui, YANG Liu, LUO Jing, JI Wenling. Preparation of ZrO2 Porous Fiber by Electrospinning and Its Thermal Conductivity. Materials Reports, 2019, 33(20): 3396-3400.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050192  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3396
1 Reidy C J, Fleming T J, Hampshire S, et al.Fusion Science and Techno-logy, 2011, 8(6), 1475.2 Zao L Z B. Foreign Refractories, 1989, 14(4),26 (in Chinese).早濑稚博. 国外耐火材料, 1989, 14(4),26.3 Xu L, Lee H K. Analytical Chemistry, 2007, 79(14),5241.4 Lamastra F R, Bianco A, Meriggi A, et al. Chemical Engineering Journal, 2008, 145(1), 169.5 Ko J B, Lee S W, KimI D E, et al. Journal of Porous Materials, 2006, 13(3),325.6 Wang L. Ceramics International, 1996, 17(2), 38(in Chinese).王玲. 现代技术陶瓷, 1996, 17(2),38.7 Liu H Y, Chen Y, Liu G S, et al. Journal of Colloid And Interface Science, 2009, 6,234.8 He S A, Li M Q. China’s Refractories,2009, 48(2),19.9 Dhamaraj N, Kim C H, Kim H Y. Synthesis and Reactivity Inorganic Metal-Organic and Nano-Metal Chemistry, 2006, 36(1),29.10 Luo L H, Huang Z Z, Shao Y J, et al. Journal of the Chinese Ceramic Society, 2013(8),1031(in Chinese).罗凌虹, 黄祖志, 邵由俊, 等. 硅酸盐学报, 2013(8),1031.11 Huo D Q, Luo W, Hou C J, et al. Transducer and Microsystem Technologies, 2009, 28(2),4(in Chinese).霍丹群, 罗伟, 侯长军, 等. 传感器与微系统, 2009, 28(2),4.12 Chuai H Y, Zhou D F, Zhu X F, et al. Chinese Journal of Catalysis, 2015, 36(12),2194(in Chinese).揣宏媛, 周德凤, 朱晓飞, 等. 催化学报, 2015, 36(12), 2194.13 Azad A M. Materials Letters, 2006, 60, 67.14 Zhang H B, Edirisinghe M J. Journal of the American Ceramic Society, 2006, 89(6), 1870.15 Wang T C, Kong S, Chang L J. Ceramics International, 2012, 38(8),6783.16 Li J Y, Tan Y, Xu F M, et al. Materials Letters, 2008, 62(16), 2396.17 Qin D K, Gu A J, Liang G Z, et al. RSC Advances, 2012, 2(4), 1364.18 Zhao Y Y, Tang Y F, Guo Y C, et al. Fibers and Polymers, 2010, 11(8),1119.19 Marlow F, Spliethoff B, Tesche B, et al. Advanced Materials, 2000, 12, 961.20 Michel D, Ven D, Borre M D. The American Ceramic Society, 1988, 7, 555.21 Moon J Y, Choi H S, Kim H J, et al. Surface & Coatings Technology, 2002, 155(1),1.22 Li L P, Zhang P G, Liang J D, et al. Ceramics International, 2010, 36(2), 589.23 Wang X D. Basic research on application of nanoporous SiO2 aerogel insulation composite.Master’sThesis, National University of Defense Technology, China,2006(in Chinese).王小东 纳米多孔SiO2气凝胶隔热复合材料应用基础研究,硕士学位论文,国防科技大学,2006.24 Graule T J, Baader F H, Gauckler L J. Ceramic Forum International, 1994, 71(6), 317.
[1] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[2] 黄艳萍, 但年华, 但卫华. 静电纺丝制备胶原基复合纳米医用纤维的研究进展[J]. 材料导报, 2019, 33(19): 3322-3327.
[3] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[4] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[5] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[6] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[7] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[8] 杜敏, 宋滇, 谢玲, 周愉翔, 李德生, 朱纪欣. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报, 2018, 32(19): 3281-3294.
[9] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[10] 李延安, 杨汝禄, 张华, 孙海滨, 司维蒙, 李蛟. 煅烧温度对铁酸铋纤维形貌及性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2340-2344.
[11] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[12] 戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
[13] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[14] 鲍艳, 封彩萍. 亚微级氧化锌空心球的制备及其光催化性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 42-49.
[15] 陶磊,郑云武,邸明伟,张彦华,郑志锋. 由液化物树脂制备多孔碳纳米纤维及其表征*[J]. 材料导报编辑部, 2017, 31(10): 101-106.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed