Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 30-34    https://doi.org/10.11896/j.issn.1005-023X.2017.022.007
  材料研究 |
静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*
戴剑锋1,2,田西光1,2,闫兴山2,李维学2,王青2
1 甘肃省省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学理学院,兰州 730050
Structure and Magnetic Properties of Electrospun Co0.6Ni0.3Zn0.1Fe2O4 and Co0.6Ni0.3Cu0.1Fe2O4 Nanofibers
DAI Jianfeng1,2, TIAN Xiguang1,2 , YAN Xingshan2, LI Weixue2, WANG Qing2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou 730050;
2 School of Sciences, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用静电纺丝技术制备出表面光滑、直径均匀的Co0.6Ni0.3Cu0.1Fe2O4/PVP和Co0.6Ni0.3Zn0.1Fe2O4/PVP纳米纤维前驱丝,经500~900 ℃煅烧后得到Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维。用TG-DSC、XRD、SEM及VSM现代测试分析手段对Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构、形貌及磁学性能进行测试表征。结果表明:在空气气氛中经500~900 ℃煅烧后可得到纯尖晶石相、结晶度良好的纳米纤维或短纤维;当温度为700 ℃时,Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的形貌细长而光滑且直径相对均匀,大约为80 nm;此时Co0.6Ni0.3Cu0.1Fe2O4纳米纤维则保有较高的剩磁比(Mr/Ms)及矫顽力,分别为0.56和1 088.87 Oe。在500 ℃、600 ℃、700 ℃、800 ℃、900 ℃煅烧后,Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的饱和磁化强度分别比Co0.6Ni0.3Cu0.1Fe2O4纳米纤维增大了14.5%、7%、16%、10.7%、8%,而矫顽力则分别降低了38%、51%、50%、46%、46.7%。两种纳米纤维的饱和磁化强度及矫顽力存在差异,为CoNi铁氧体在电磁方面的应用提供了很好的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戴剑锋
田西光
闫兴山
李维学
王青
关键词:  静电纺丝  纳米纤维  矫顽力  磁性能    
Abstract: In this paper, the precursor of Co0.6Ni0.3Cu0.1Fe2O4/PVP and Co0.6Ni0.3Zn0.1Fe2O4/PVP nanofibers with uniform diameter and smooth surface were prepared by electrospinning technique. Then the Co0.6Ni0.3Cu0.1Fe2O4/PVP and Co0.6Ni0.3Zn0.1-Fe2O4/PVP nanofibers were obtained via heat treatment at 500—900 ℃. The phase, morphology, structure and magnetic properties of the resultant Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4 nanofibers were characterized by TG-DSC, XRD, SEM and VSM respectively. The results show that the pure phase and well crystallized Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4nanofibers or staple fibers can be obtained after heat treatment in the air by heat treatment at 500—900 ℃. When the temperature is at 700 ℃, the diameter of Co0.6Ni0.3Cu0.1Fe2O4 and Co0.6Ni0.3Zn0.1Fe2O4 nanofibers with smooth surface is about 80 nm, and moreover, the Co0.6Ni0.3Cu0.1Fe2O4 nanofibers retain a high remanence ratio (Mr/Ms) and a coercivity of 0.56 and 1 088.87 Oe respectively. At 500 ℃, 600 ℃, 700 ℃, 800 ℃, 900 ℃, Co0.6Ni0.3Zn0.1Fe2O4 nanofibers exhibit the intensities of saturation magnetization which are 14.5%, 7%, 16%, 10.7%, 8% higher than those of Co0.6Ni0.3Cu0.1Fe2O4 nanofibers respectively, as well as the coercive forces which are 38%, 51%, 50%, 46%, 46.7% lower than Co0.6Ni0.3Cu0.1Fe2O4 nanofibers respectively. The differences of saturation magnetization and coercivity of the two nanofibers provide a good reference for electromagnetic applications of CoNi ferrite.
Key words:  electrospinning    nanofibers    coercive force    magnetic property
                    发布日期:  2018-05-08
ZTFLH:  O6  
基金资助: *国家自然科学基金(11664023)
作者简介:  戴剑锋:男,1963年生,博士,教授,博士研究生导师,研究方向为纳米材料E-mail:daijf@lut.cn;田西光:男,1989年生,硕士研究生,研究方向为纳米磁性材料E-mail:steventianxg@foxmail.com
引用本文:    
戴剑锋,田西光,闫兴山,李维学,王青. 静电纺丝法制备的Co0.6Ni0.3Cu0.1Fe2O4和Co0.6Ni0.3Zn0.1Fe2O4纳米纤维的结构及磁性能*[J]. 材料导报编辑部, 2017, 31(22): 30-34.
DAI Jianfeng, TIAN Xiguang, YAN Xingshan, LI Weixue, WANG Qing. Structure and Magnetic Properties of Electrospun Co0.6Ni0.3Zn0.1Fe2O4 and Co0.6Ni0.3Cu0.1Fe2O4 Nanofibers. Materials Reports, 2017, 31(22): 30-34.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.007  或          http://www.mater-rep.com/CN/Y2017/V31/I22/30
1 韩志全. 铁氧体及其磁性物理[M]. 北京:航空航天出版社,2010:3.
2 Mustafa G, Islam M U, Zhang W, et al. Investigation of structural and magnetic properties of Ce3+-substituted nanosized Co-Cr ferrites for a variety of applications[J]. J Alloys Compd, 2015, 618:428.
3 Rahman M T, Vargas M, Ramana C V. Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite[J]. J Alloys Compd, 2014,617:547.
4 Pankhurst Q A, Thanh N T K, Jones S K, et al. Progress in applications of magnetic nanoparticles in biomedicine[J]. J Phys D: Appl Phys, 2009,42(22):22401.
5 Chen B, Chen D, Kang Z, et al. Preparation and microwave absorption properties of Ni-Co nanoferrites[J]. J Alloys Compd, 2015,618:222.
6 Zhuang Fuqiang, Tan Ruiqin, Yang Ye, et al. Research progress in the application of magnetic nanomaterials for the adsorption of heavy metal ions in wastewater[J]. Mater Rev:Rev, 2014,28(3):24(in Chinese).
庄福强, 谭瑞琴, 杨晔,等. 磁性纳米材料在污水中重金属离子吸附应用中的研究进展[J]. 材料导报:综述篇, 2014, 28(3):24.
7 Shi Tingting, Li Tao, Jin Guangrong, et al. Applications of nanomaterials in the field of medicine[J]. Mater Rev, 2014,28(s2):24(in Chinese).
史婷婷, 李涛, 晋光荣,等. 纳米材料在医药领域的应用[J]. 材料导报, 2014,28(专辑24):24.
8 Ma Yongqing, Huang Song, Xu Shitao. Investigation on the magnetic properties of hard CoFe2O4/soft CoFe2 composites[J]. J Anhui University(Nat Sci Ed), 2016,40(1):37(in Chinese).
马永青, 黄松, 徐士涛. 硬磁CoFe2O4/软磁CoFe2复合物的磁性研究[J]. 安徽大学学报(自然科学版), 2016,40(1):37.
9 Xiang Jun, Chu Yanqiu, Zhou Guangzhen. et al. Electrospinning fabrication,characterization and magnetic properties of Co0.5Ni0.5-Fe2O4nanofibers[J]. Chin J Nonferr Met, 2011,21(8):1944(in Chinese).
向军, 褚艳秋, 周广振,等. Co0.5Ni0.5Fe2O4纳米纤维的静电纺丝法制备、表征及其磁性能[J]. 中国有色金属学报, 2011,21(8):1944.
10 Lohar K S, Pachpinde A M, Langade M M, et al. Self-propagating high temperature synthesis, structural morphology and magnetic interactions in rare earth Ho3+, doped CoFe2O4, nanoparticles[J]. J Alloys Compd, 2014,604(604):204.
11 Li L Z, Yu Z, Lan Z W, et al. Structural and magnetic properties of Mg-substituted NiZnCo ferrite nanopowders[J]. Ceram Int, 2014, 40(9):13917.
12 Stefanescu M, Bozdog M, Muntean C, et al. Synthesis and magnetic properties of Co1-xZnxFe2O4 (x=0-1) nanopowders by thermal decomposition of Co(Ⅱ), Zn(Ⅱ) and Fe(Ⅲ) carboxylates[J]. J Magn Magn Mater, 2015,393:92.
13 Chen Ri. Preparation and properties of hydrothermal cobalt ferrite nano-materials[D]. Beijing: Beijing University of Chemical Technology, 2014(in Chinese).
陈日. Co基铁氧体纳米材料的水热制备及性能研究[D]. 北京:北京化工大学, 2014.
14 Zhao Haitao, Wang Qiao, Liu Ruiping, et al. Synthesis and magnetocaloric properties of Ni-Co-Zn nano ferrites[J]. Chem J Chinese Universities, 2016,37(4):613(in Chinese).
赵海涛, 王俏, 刘瑞萍,等. 镍钴锌纳米铁氧体的制备及磁热性能[J]. 高等学校化学学报, 2016,37(4):613.
15 Hu Dandan. Preparation of CoFe2O4 and BiFeO3 thin films by ultrasonic spray pyrolysis and their properties[D].Guangzhou:South China University of Technology, 2014(in Chinese).
胡丹丹.超声喷雾热解法制备CoFe2O4和BiFeO3薄膜及其性能研究[D]. 广州:华南理工大学, 2014.
16 Yan Chengcheng, Jia Yongtang, Zeng Xianhua, et al. Research development of electrospinning nanofiber mats for heavy metal ions adsorption[J]. Mater Rev:Rev, 2014, 28(5):139(in Chinese).
闫成成, 贾永堂, 曾显华,等. 静电纺纳米纤维膜用于重金属离子吸附的研究进展[J]. 材料导报:综述篇, 2014, 28(5):139.
17 Bayrakdar H, Esmer K. Dielectric characterization of NixCo1-x-Fe2O4 nanocrystals thin film over a broad frequency range (1 MHz—3 GHz)[J]. J Appl Phys, 2010,107(4):044102.
18 Pan Weiwei, Liu Shihua, Nie Dongmei. Developments of spinel ferrite nanofibers fabricated by electrospinning[J]. Mater Sci, 2016, 6(4): 230(in Chinese).
潘伟伟, 刘世华, 聂冬梅. 静电纺丝法制备尖晶石铁氧体纳米纤维的研究进展[J]. 材料科学, 2016, 6(4):230.
19 Xiang Jun. Fabarication, characterization and magnetic properties of electrospun complex spinel ferrite-based micro/nano fibers[D]. Zhenjiang: Jiangsu University, 2011(in Chinese).
向军. 多元尖晶石铁氧体基微纳米纤维的电纺制备、表征与磁性能研究[D]. 镇江:江苏大学, 2011.
20 Zhang Jie. Ferrite nanofibers fabricated by electrospinning: Its microstructure and magnetic properties research[D]. Lanzhou: Lanzhou University of Technology, 2014(in Chinese).
张杰. 静电纺丝法制备铁氧体纳米纤维的微结构及磁性能研究[D]. 兰州:兰州理工大学, 2014.
21 Soares J M, Cabral F A O, Araújo J H D, et al. Exchange-spring behavior in nanopowders of CoFe2O4-CoFe2[J]. Appl Phys Lett, 2011, 98(7):072502.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 李霖, 张旭, 曲飏, 郑维, 刘文娟, 张学斌. 静电纺丝技术与装置的研究进展[J]. 材料导报, 2019, 33(z1): 89-93.
[3] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[4] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[5] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[6] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[7] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[8] 陈莹, 侯翼, 成来飞. 针对静电纺丝SiC纤维纳米化的溶液参数优化设计[J]. 材料导报, 2019, 33(10): 1619-1623.
[9] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[10] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[11] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[12] 刘涛, 马垒, 赵世谦, 马冬冬, 李林, 成钢. 沉积厚度对L10-FePd颗粒膜结构和磁性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 525-527.
[13] 李婷婷, 闫梦雪, 吴宗翰, 姜茜, 林佳弘. 动态线性电极静电纺PVA纳米纤维的可纺性[J]. 材料导报, 2018, 32(24): 4363-4369.
[14] 吴宁, 杨洁, 高杨, 乔志勇, 郑姗姗, 裴晓园, 焦亚男. “龟裂”纳米纤维片/玻纤织物复合预制体的层间渗流特性[J]. 材料导报, 2018, 32(24): 4374-4380.
[15] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed