Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 144-151    https://doi.org/10.11896/j.issn.1005-023X.2017.019.020
  吸附分离材料 |
用于油水分离的静电纺纳米纤维膜研究进展*
王洪杰1, 王闻宇1, 王赫1, 金欣2, 李嘉禄3, 林童1,4, 朱正涛1,5
1 天津工业大学纺织学院,天津300387;
2 天津工业大学省部共建分离膜与膜过程国家重点实验室,天津300387;
3 天津工业大学复合材料研究所,天津300387;
4 澳大利亚迪肯大学前沿纤维研究与创新中心,吉朗VIC 3217;
5 美国南达科他矿业理工学院,拉皮德城SD 57701
Progress in Electrospun Nanofibrous Membranes USED for Oil-Water Separation
WANG Hongjie1, WANG Wenyu1, WANG He1, JIN Xin2, LI Jialu3, LIN Tong1,4, ZHU Zhengtao1,5
1 School of Textiles, Tianjin Polytechnic University, Tianjin 300387;
2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387;
3 Institute of Composite Materials, Tianjin Polytechnic University, Tianjin 300387;
4 Australian Future Fibres Research and Innovation Center, Deakin University, Geelong, VIC 3217;
5 Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701
下载:  全 文 ( PDF ) ( 2318KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,石油泄漏以及工业含油废水的排放对生态环境造成了严重的损害,高效节能的新型油水分离材料已成为研究热点。具有特殊亲液性的静电纺纳米纤维膜是一种可用于油水分离的新型膜材料,它具有较高的比表面积和孔隙率,既可以自发实现油水分离,又能减少能源消耗。主要介绍了超亲水疏油、超疏水亲油、智能切换亲水/亲油以及单向导油纳米纤维膜,及纤维膜的制备方法、亲液性以及油水分离过程和分离效率;并对静电纺油水分离纳米纤维膜所面临的挑战和应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洪杰
王闻宇
王赫
金欣
李嘉禄
林童
朱正涛
关键词:  静电纺丝  纳米纤维  超亲水疏油  超疏水亲油  油水分离    
Abstract: Recently, oil pollution resulting from frequent oil spill accidents and industries has been a great damage to the eco-environment. Therefore, novel oil-water separation materials are urgently desired and have become a hot issue. Electrospun nanofibers of special wettability is a new porous material for oil-water separation owing to their large specific surface area and higher porosity. It can separate oil and water spontaneously without additional energy. This paper gives a comprehensive review to the recent studies about the superhydrophilic-oleophobic, superhydrophobic-oleophilic, switchable hydrophilicity/oleophilicity and directional oil transport nanofibrous membranes. In each part, the preparation, lyophibilicity, separation process and efficient are discussed. Moreo-ver, the challenges and prospects for the future of this kind of materials are highlighted.
Key words:  electrospinning    nanofibers    superhydrophilic-oleophobic    superhydrophobic-oleophilic    oil-water separation
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TS17  
  TB34  
  TQ028.8  
基金资助: *国家自然科学基金(51103101;51573136);中国博士后科学基金(2011M500525;20110490785);天津市自然科学基金(12JCYBJC17800;16JCTPJC45100);天津市科技计划项目(课题) (15PTSYJC00230;15PTSYJC00240;15PTSYJC00250)
作者简介:  王洪杰:女,1986年生,博士研究生,主要从事油水分离材料的研究 E-mail:hjwang1112@126.com 王闻宇:通讯作者,男,副教授,主要从事新型功能纤维材料的研究 E-mail:wwy-322@126.com
引用本文:    
王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
WANG Hongjie, WANG Wenyu, WANG He, JIN Xin, LI Jialu, LIN Tong, ZHU Zhengtao. Progress in Electrospun Nanofibrous Membranes USED for Oil-Water Separation. Materials Reports, 2017, 31(19): 144-151.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.020  或          https://www.mater-rep.com/CN/Y2017/V31/I19/144
1 Chen W J, Su Y L, Zheng L L, et al. The improved oil/water separation performance of cellulose acetate-graft-polyacrylonitrile membranes[J]. J Membr Sci,2009,337(1):98.
2 Tao M M, Xue L X, Liu F, et al. An intelligent superwetting pvdf membrane showing switchable transport performance for oil/water separation[J]. Adv Mater,2014,26(18):2943.
3 Kong J, Li K. Oil removal from oil-in-water emulsions using pvdf membranes[J]. Separat Purifica Technol,1999, 16(1):83.
4 Ochoa N A, Masuelli M, Marchese J. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes[J]. J Membr Sci,2003,226(1):203.
5 Mansourizadeh A, Azad A J. Preparation of blend polyethersulfone/cellulose acetate/polyethylene glycol asymmetric membranes for oil-water separation[J]. J Polym Res,2014,21(3):375.
6 Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane[J]. J Membr Sci,2013,325:427.
7 Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angew Chem,2004,43(15):2012.
8 Khosravi M, Azizian S. Preparation of superhydrophobic and supe-roleophilic nanostructured layer on steel mesh for oil-water separation[J]. Separat Purificat Technol,2017,172:366.
9 Tian D L, Zhang X F, Tian Y, et al. Photo-induced water-oil separation based on switchable superhydrophobicity-superhydrophilicity and underwater superoleophobicity of the aligned ZnO nanorod array-coated mesh films[J]. J Mater Chem,2012,22(37):19652.
10 Xue Z X, Wang S T, Lin L, et al. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation[J]. Adv Mater,2011,23(37):4270.
11 Cheng Z J, Lai H, Du Y, et al. pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity[J]. ACS Appl Mater Interfaces,2014,6(1):636.
12 Zhang W F, Cao Y Z, Liu N, et al. A novel solution-controlled hydrogel coated mesh for oil/water separation based on monolayer electrostatic self-assembly[J]. RSC Adv,2014,4(93):51404.
13 Tian X L, Jin H, Sainio J, et al. Droplet and fluid gating by biomimetic janus membranes[J]. Adv Funct Mater, 2014,24(38):6023.
14 Zhou H, Wang H X, Niu H T, et al. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles[J]. Adv Funct Mater, 2013,23(13):1664.
15 Zhou H, Wang H X, Niu H T, et al. Superamphiphobic fabrics: Superstrong, chemically stable, superamphiphobic fabrics from particle-free polymer coatings [J]. Adv Mater Interfaces,2015,2(6):1400559.
16 Zhou H, Wang H X, Niu H T, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Adv Mater Interfaces,2016,3(17):1600283.
17 Zeng C, Wang H X, Zhou H, et al. Directional water transport fabrics with durable ultra-high one-way transport capacity[J]. Adv Mater Interfaces,2016,3(14):1600036.
18 Zhou H, Wang H X, Niu H T, et al. Superphobicity/philicity janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Sci Rep,2013,3(10):2964.
19 Wang H X, Ding J, Dai L M, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. J Mater Chem,2010,20(37):7938.
20 Xu Z G, Zhao Y, Wang H X, et al. A superamphiphobic coating with ammonia-triggered transition to superhydrophilic and superoleophobic for oil-water separation[J]. Angew Chem,2015,54(15):4527.
21 Xu Z G, Zhao Y, Wang H X, et al. Fluorine-free superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separation[J]. ACS Appl Mater Interfaces,2016,8(8):5661.
22 Wang H X, Zhou H, Yang W D, et al. Selective, spontaneous one-way oil-transport fabrics and its novel use for gauging liquid surface tension[J]. ACS Appl Mater Interfaces,2015,7(41):22874.
23 Li D, Xia Y N. Electrospinning of nanofibers: Reinventing the wheel?[J]. Adv Mater,2004,16(14):1151.
24 Obaid M, Barakat N A M, Fadali O A, et al. Effective and reusable oil/water separation membranes based on modified polysulfone electrospun nanofiber mats[J]. Chem Eng J,2015,259(1):449.
25 Obaid M, Barakat N A M, Fadali O A, et al. Stable and effective super-hydrophilic polysulfone nanofiber mats for oil/water separation[J]. Polymer,2015,72:125.
26 Obaid M, Fadali O A, Lim B H, et al. Super-hydrophilic and highly stable in oils polyamide-polysulfone composite membrane by electrospinning[J]. Mater Lett,2015,138(1):196.
27 Ahmed F E, Lalia B S, Hilal N, et al. Underwater superoleophobic cellulose/electrospun PVDF-HFP membranes for efficient oil/water separation[J]. Desalination,2014,344(344):48.
28 Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial[J]. Adv Mater,2002,14(24):1857.
29 Hu D L, Chan B, Bush J W M. The hydrodynamics of water strider locomotion[J]. Nature,2003,424(6949):663.
30 Young T. An essay on the cohesion of fluids[J]. Royal Society of London Philosophical Trans,1805,95:65.
31 Fang W Y, Liu L B, Li T, et al. Electrospun N-substituted polyurethane membranes with self-healing ability for self-cleaning and oil/water separation[J]. Chem A Eur J,2016,22(3):878.
32 Arslan O, Aytac Z, Uyar T. Superhydrophobic, hybrid, electrospun cellulose acetate nanofibrous mats for oil/water separation by tailored surface modification[J]. ACS Appl Mater Interfaces,2016,8(30):19747.
33 Zhang C L, Li P, Cao B. Electrospun microfibrous membranes based on PIM-1/POSS with high oil wettability for separation of oil-water mixtures and cleanup of oil soluble contaminants[J]. Ind Eng Chem Res,2015,54(35):8772.
34 Li H, Zhao X Y, Wu P F, et al. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer[J]. J Mater Sci,2016,51(6):3211.
35 Liu Z J, Wang H Y, Wang E Q, et al. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning[J]. Polymer,2016,82:105.
36 Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Ind Eng Chem,1936,28(8):988.
37 Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Trans Faraday Soc,1944,40:546.
38 Zhou Z P, Wu X F. Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation[J]. Mater Lett,2015,160:423.
39 Ouyang S S, Wang T, Jia X Y, et al. Self-indicating and recyclable superhydrophobic membranes for effective oil/water separation in harsh conditions[J]. Mater Des,2016,96:357.
40 Li X, Wang M, Wang C, et al. Facile immobilization of ag nanocluster on nanofibrous membrane for oil/water separation[J]. ACS Appl Mater Interfaces,2014,6(17):15272.
41 Obaid M, Tolba G M K, Motlak M, et al. Effective polysulfone-amorphous SiO2 NPs electrospun nanofiber membrane for high flux oil/water separation[J]. Chem Eng J,2015,279:631.
42 Si Y, Fu Q X, Wang X Q, et al. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions[J]. ACS Nano,2015,9(4):3791.
43 Huang M L, Si Y, Tang X M, et al. Gravity driven separation of emulsified oil-water mixtures utilizing in situ polymerized superhydrophobic and superoleophilic nanofibrous membranes[J]. J Mater Chem A,2013,1(45):14071.
44 Song B T, Xu Q. Highly hydrophobic and superoleophilic nanofibrous mats with controllable pore sizes for efficient oil/water separation[J]. Langmuir,2016,32(39):9960.
45 Wang Y F, Lai C L, Hu H W, et al. Temperature-responsive nanofibers for controllable oil/water separation[J]. RSC Adv,2015,5(63):51078.
46 Li J J, Zhu L T, Luo Z H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation[J]. Chem Eng J,2016,287:474.
47 Li J J, Zhou Y N, Luo Z H. Smart fiber membrane for pH-induced oil/water separation[J]. ACS Appl Mater Interfaces,2015,7(35):19643.
48 Li J J, Zhou Y N, Jiang Z D, et al. Electrospun fibrous mat with pH-switchable superwettability that can separate layered oil/water mixtures[J]. Langmuir,2016,32(50):13358.
49 Che H L, Huo M, Peng L, et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability[J]. Angew Chem Int Ed,2015,54(31):8934.
50 Wang H X, Zhou H, Niu H T, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance[J]. Adv Mater Interfaces,2015,2(4):1.
51 Zhao Y, Wang H X, Zhou H, et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small,2016,13(4):1601070.
52 Chu Z L, Feng Y J, Seeger S. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angew Chem Int Ed,2015,54(8):2328.
53 Wang X F, Yu J Y, Sun G, et al. Electrospun nanofibrous mate-rials: A versatile medium for effective oil/water separation[J]. Mater Today,2015,19(7):403.
[1] 何诗峰, 薛蕊, 贺永晴, 黄妍, 伍一波, 师奇松. Tb3+掺杂PVDF/PLLA多功能压电纤维的制备及性能[J]. 材料导报, 2024, 38(8): 22070274-6.
[2] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[3] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[4] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[5] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[6] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[7] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[8] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[9] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[10] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[11] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[12] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[13] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[14] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[15] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed