Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 125-128    https://doi.org/10.11896/j.issn.1005-023X.2017.016.026
  材料研究 |
Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*
朱刚1, 陈家林1, 贾海龙1, 刘颖2, 谢明1
1 昆明贵金属研究所, 稀贵金属综合利用新材料国家重点实验室, 昆明 650106;
2 四川大学材料科学与工程学院, 成都 610044
Study on Concentrating Behavior of Binder on Surface of Ti(C,N)/AlCoCrFeNi Cermets During Sintering
ZHU Gang1, CHEN Jialin1, JIA Hailong1, LIU Ying2, XIE Ming1
1 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106;
2 School of Materials Science and Engineering, Sichuan University, Chengdu 610044
下载:  全 文 ( PDF ) ( 1442KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过分析合金表面形貌以及表面物相,研究了新型Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中粘结相的表面富集行为。结果表明,在1 300 ℃下烧结60 min后,合金烧结体表面发生了明显的富集,并形成了第三相,即类似M6C结构的缺碳相(η)。该现象的产生主要归因于烧结过程中,表面脱碳形成了表面和内部的碳浓度差、固溶体浓度差以及温度差,促使金属元素钨、钽、钛、钼以扩散的方式向内迁移,表面的低碳造成合金的共晶温度提高,表面的液相量减少从而产生负压张力,导致内部的液相向表面迁移。另外,由于合金微观组织中体积含量不同的粘结相区域产生压力差,导致在烧结过程中富钨区的粘结相倾向于向液相量低的贫钨区迁移,使得金属粘结相逐渐向表面迁移、渗透,富集于表面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱刚
陈家林
贾海龙
刘颖
谢明
关键词:  Ti(C,N)基金属陶瓷  高熵合金  粘结相  富集行为    
Abstract: Through the analysis of surface topography and phase composition of the alloy, the concentrating behavior of binder on the surface of Ti(C,N)/AlCoCrFeNi cermets during sintering process were studied. The results indicated that the binder was obviously concentrated on surface when sintered under 1 300 ℃ for 60 minutes, and formed a third phase containing M6C-type brittle phase (η). This phenomenon could attribute to the carbon concentration difference, solid solution concentration difference and temperature difference of the surface and interior, which caused by decarbonization during sintering. It urged the migration of W, Ta, Ti, Mo to the interior in a diffusion way. Besides, the surface decarbonization also caused the increase of alloy eutectic temperature. Thus, the reduction of surface liquid phase leaded to the generation of negative pressure, which made the inner liquid phase transfer to the surface. In addition, binding phase regions with different volume content in the microstructure might lead to the pressure difference, and the rich W region was apt to migrate to the poor W region with low liquid phase during sintering, which caused the binding phase transfer, permeate and finally gathered on the surface.
Key words:  Ti(C,N)-based cermets    high entropy alloy    binder    concentrating behavior
出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG148  
基金资助: 云南省稀贵金属先进材料协同创新基金项目(2014XT01);国家基金-云南联合基金项目(U1302272)
作者简介:  朱刚:男,1986年生,博士,副研究员,主要研究方向为高性能功能复合材料 E-mail:zg@ipm.com.cn
引用本文:    
朱刚, 陈家林, 贾海龙, 刘颖, 谢明. Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 125-128.
ZHU Gang, CHEN Jialin, JIA Hailong, LIU Ying, XIE Ming. Study on Concentrating Behavior of Binder on Surface of Ti(C,N)/AlCoCrFeNi Cermets During Sintering. Materials Reports, 2017, 31(16): 125-128.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.026  或          https://www.mater-rep.com/CN/Y2017/V31/I16/125
1 Yeh J W,Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater,2004,6:299.
2 Yeh J W,Chen S K,Gan J Y, et al. Formation of simple crystal structures in solid solution alloys with multi-principle metallic elements[J]. Metall Mater Trans A,2004,35A(8):2533.
3 Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrFeNi high-entropy alloys as function of aluminum content[J]. Wear,2006,261:513.
4 Chen T K,Shun T T,Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surf Coat Technol,2004,188:193.
5 Zhu Gang,Liu Ying,Ye Jinwen. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder[J].Mater Lett,2013,113:80.
6 Zhu Gang,Liu Ying,Ye Jinwen. Early high temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCr-FeNi high-entropy alloys binder[J]. Int J Refract Met Hard Mater,2014,44:35.
7 Janisch D S, Lengauer W, Rodiger K, et al. Cobalt capping: Why is sintered hardmetal sometimes covered with binder [J]. Int J Refract Met Hard Mater,2010,28:466.
8 Guo J,Fan P,Wang X, et al. Formation of Co-capping during sintering of straight WC-10 wt% Co[J]. Int J Refract Met Hard Mater,2010,28:317.
9 Sachet E, Schubert WD, Mühlbauer G, et al. On the formation and in situ observation of thin surface layers of cobalt on sintered cemented carbides[J]. Int J Refract Met Hard Mater,2012,31:96.
10 Zhang Yizhong, Xie Hong, Li Kun. Formation of Co-capping during sintering of ultrafine WC-10%Co cemented carbide[J]. Cemented Carbide,2011,28(6):358(in Chinese).
张益中,谢宏,李昆.WC-10%Co超细硬质合金烧结中表面钴聚集的形成[J].硬质合金,2011,28(6):358.
11 Wu Jianguo. Research on the η phase in decarburized zone of gra-dient cemented carbide [J]. Cemented Carbide,2008(6):79(in Chinese).
吴建国.梯度合金中脱碳区η相的研究[J].硬质合金,2008(6):79.
12 铃木寿.含氮WC-β-Co合金烧结块表面生成的脱β层[J]. 日本金属学会志,1981,45(1):11.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[4] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[5] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[6] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[7] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[8] 笪强, 马国政, 康嘉杰, 黄艳斐, 周永宽, 王海斗. 耐磨耐蚀高熵合金涂层性能研究进展[J]. 材料导报, 2024, 38(24): 23110145-10.
[9] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[12] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[13] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[14] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[15] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed