Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 125-128    https://doi.org/10.11896/j.issn.1005-023X.2017.016.026
  材料研究 |
Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*
朱刚1, 陈家林1, 贾海龙1, 刘颖2, 谢明1
1 昆明贵金属研究所, 稀贵金属综合利用新材料国家重点实验室, 昆明 650106;
2 四川大学材料科学与工程学院, 成都 610044
Study on Concentrating Behavior of Binder on Surface of Ti(C,N)/AlCoCrFeNi Cermets During Sintering
ZHU Gang1, CHEN Jialin1, JIA Hailong1, LIU Ying2, XIE Ming1
1 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106;
2 School of Materials Science and Engineering, Sichuan University, Chengdu 610044
下载:  全 文 ( PDF ) ( 1442KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过分析合金表面形貌以及表面物相,研究了新型Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中粘结相的表面富集行为。结果表明,在1 300 ℃下烧结60 min后,合金烧结体表面发生了明显的富集,并形成了第三相,即类似M6C结构的缺碳相(η)。该现象的产生主要归因于烧结过程中,表面脱碳形成了表面和内部的碳浓度差、固溶体浓度差以及温度差,促使金属元素钨、钽、钛、钼以扩散的方式向内迁移,表面的低碳造成合金的共晶温度提高,表面的液相量减少从而产生负压张力,导致内部的液相向表面迁移。另外,由于合金微观组织中体积含量不同的粘结相区域产生压力差,导致在烧结过程中富钨区的粘结相倾向于向液相量低的贫钨区迁移,使得金属粘结相逐渐向表面迁移、渗透,富集于表面。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱刚
陈家林
贾海龙
刘颖
谢明
关键词:  Ti(C,N)基金属陶瓷  高熵合金  粘结相  富集行为    
Abstract: Through the analysis of surface topography and phase composition of the alloy, the concentrating behavior of binder on the surface of Ti(C,N)/AlCoCrFeNi cermets during sintering process were studied. The results indicated that the binder was obviously concentrated on surface when sintered under 1 300 ℃ for 60 minutes, and formed a third phase containing M6C-type brittle phase (η). This phenomenon could attribute to the carbon concentration difference, solid solution concentration difference and temperature difference of the surface and interior, which caused by decarbonization during sintering. It urged the migration of W, Ta, Ti, Mo to the interior in a diffusion way. Besides, the surface decarbonization also caused the increase of alloy eutectic temperature. Thus, the reduction of surface liquid phase leaded to the generation of negative pressure, which made the inner liquid phase transfer to the surface. In addition, binding phase regions with different volume content in the microstructure might lead to the pressure difference, and the rich W region was apt to migrate to the poor W region with low liquid phase during sintering, which caused the binding phase transfer, permeate and finally gathered on the surface.
Key words:  Ti(C,N)-based cermets    high entropy alloy    binder    concentrating behavior
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG148  
基金资助: 云南省稀贵金属先进材料协同创新基金项目(2014XT01);国家基金-云南联合基金项目(U1302272)
作者简介:  朱刚:男,1986年生,博士,副研究员,主要研究方向为高性能功能复合材料 E-mail:zg@ipm.com.cn
引用本文:    
朱刚, 陈家林, 贾海龙, 刘颖, 谢明. Ti(C,N)/AlCoCrFeNi金属陶瓷烧结过程中的粘结相表面富集行为研究*[J]. 《材料导报》期刊社, 2017, 31(16): 125-128.
ZHU Gang, CHEN Jialin, JIA Hailong, LIU Ying, XIE Ming. Study on Concentrating Behavior of Binder on Surface of Ti(C,N)/AlCoCrFeNi Cermets During Sintering. Materials Reports, 2017, 31(16): 125-128.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.026  或          http://www.mater-rep.com/CN/Y2017/V31/I16/125
1 Yeh J W,Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater,2004,6:299.
2 Yeh J W,Chen S K,Gan J Y, et al. Formation of simple crystal structures in solid solution alloys with multi-principle metallic elements[J]. Metall Mater Trans A,2004,35A(8):2533.
3 Wu J M, Lin S J, Yeh J W, et al. Adhesive wear behavior of AlxCoCrFeNi high-entropy alloys as function of aluminum content[J]. Wear,2006,261:513.
4 Chen T K,Shun T T,Yeh J W, et al. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering[J].Surf Coat Technol,2004,188:193.
5 Zhu Gang,Liu Ying,Ye Jinwen. Fabrication and properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder[J].Mater Lett,2013,113:80.
6 Zhu Gang,Liu Ying,Ye Jinwen. Early high temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCr-FeNi high-entropy alloys binder[J]. Int J Refract Met Hard Mater,2014,44:35.
7 Janisch D S, Lengauer W, Rodiger K, et al. Cobalt capping: Why is sintered hardmetal sometimes covered with binder [J]. Int J Refract Met Hard Mater,2010,28:466.
8 Guo J,Fan P,Wang X, et al. Formation of Co-capping during sintering of straight WC-10 wt% Co[J]. Int J Refract Met Hard Mater,2010,28:317.
9 Sachet E, Schubert WD, Mühlbauer G, et al. On the formation and in situ observation of thin surface layers of cobalt on sintered cemented carbides[J]. Int J Refract Met Hard Mater,2012,31:96.
10 Zhang Yizhong, Xie Hong, Li Kun. Formation of Co-capping during sintering of ultrafine WC-10%Co cemented carbide[J]. Cemented Carbide,2011,28(6):358(in Chinese).
张益中,谢宏,李昆.WC-10%Co超细硬质合金烧结中表面钴聚集的形成[J].硬质合金,2011,28(6):358.
11 Wu Jianguo. Research on the η phase in decarburized zone of gra-dient cemented carbide [J]. Cemented Carbide,2008(6):79(in Chinese).
吴建国.梯度合金中脱碳区η相的研究[J].硬质合金,2008(6):79.
12 铃木寿.含氮WC-β-Co合金烧结块表面生成的脱β层[J]. 日本金属学会志,1981,45(1):11.
[1] 刘谦, 王昕阳, 黄燕滨, 谢璐, 许诠, 黄俊雄. 高熵合金设计与计算机模拟方法的研究进展[J]. 材料导报, 2019, 33(z1): 392-397.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[4] 赵雪柔, 吕煜坤, 石拓. 高熵合金相形成理论研究进展[J]. 材料导报, 2019, 33(7): 1174-1181.
[5] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[6] 颜建辉, 李凯玲, 汪异, 邱敬文. 机械合金化和放电等离子烧结制备NbMoCrTiAl高熵合金[J]. 材料导报, 2019, 33(10): 1671-1675.
[7] 王虎, 王智慧. 等离子熔覆法制备AlxCoCrFeNi高熵合金微观组织与性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 589-592.
[8] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[9] 郭亚雄,刘其斌,尚晓娟,徐鹏,周芳. CoCrFeNi-M系高熵合金的结构与相变[J]. 《材料导报》期刊社, 2018, 32(1): 122-127.
[10] 赵钦,马国政,王海斗,李国禄,陈书赢,周羊羊. 高熵合金涂层制备及其应用的研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 65-71.
[11] 温鑫, 金国, 庞学佳, 蔡召兵, 张子晗, 崔秀芳, 王海斗, 徐滨士. 热处理对真空热压烧结NiCrCoTiV高熵合金组织结构及耐腐蚀性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 79-83.
[12] 任波, 赵瑞锋, 刘忠侠. 高熵合金氮化物薄膜的研究进展*[J]. 《材料导报》期刊社, 2017, 31(11): 44-50.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed