Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 135-141    https://doi.org/10.11896/j.issn.1005-023X.2017.022.027
  材料研究 |
电场改性水玻璃固化黄土机理研究*
方晟1,2,黄雪峰1,2,张彭成3,周俊鹏1,2,郭楠4
1 后勤工程学院军事土木工程系,重庆 401311;
2 岩土力学与地质环境保护重庆市重点实验室,重庆 401311;
3 后勤工程学院化学与材料工程系,重庆 401311;
4 兰州理工大学土木工程学院,兰州 730500
A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate
FANG Sheng1,2, HUANG Xuefeng1,2, ZHANG Pengcheng3, ZHOU Junpeng1, 2, GUO Nan4
1 Department of Civil Engineering, Logistic Engineering University, Chongqing 401311;
2 Chongqing Key Laboratory of Geomechanics & Geoenvironmental Protection, Chongqing 401311;
3 Department of Chemistry and Material Engineering, Logistic Engineering University, Chongqing 401311;
4 School of Civil Engineering,Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 865KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用正交和单因素控制实验对电场改性水玻璃加固黄土进行了研究,并通过化学组成、矿物成分和微观结构分析探讨了电场改性水玻璃加固黄土的机理。结果表明:通电电压越高,通电时间越长,改良土体的无侧限抗压强度越大;土体强度随Na2O含量、模数的增长先减小后增大,存在下极值点;X射线衍射图中出现非晶质物相峰群,随着Na2O含量的增加,非晶质先减少后增多,矿物的衍射强度先降低后升高;SEM图像表明随着电压的不断增大,生成的硅酸凝胶逐渐增多,包覆土体颗粒,填充颗粒之间的孔隙,使得骨架颗粒连接紧密,从而使得土体强度增大;BET表面积孔隙分析表明,随着通电电压的升高和通电时间的延长,黄土的小孔隙增多,孔隙体积和表面积增大,孔径分布减小,平均孔径变化不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方晟
黄雪峰
张彭成
周俊鹏
郭楠
关键词:  改性水玻璃  电场  黄土  固化    
Abstract: In this paper, the reinforcing of loess by electricity-modified sodium silicate was studied through the orthogonal test and single factor control experiment. From the aspects of chemical composition, mineral composition and microstructure perspectives, the paper further analyzed and discussed the mechanism of loess reinforced by electricity-modified sodium silicate. The experimental results indicated that the unconfined compressive strength of the reinforced loess was proportional to the voltage and electrifying time; as the content of Na2O and modulus kept increasing, the strength of the reinforced loess firstly decreased, then reached the lowest extreme point before it increased; amorphous phase peak groups appeared in the X-ray diffraction pattern, and as the Na2O content kept increasing, the amorphous phase and the diffraction intensity experienced a fall before a rise; the SEM images suggested that the voltage of sodium silicate can accelerate the generation of silica, which would tighten the particle skeleton and improved the soil strength by covering the soil particles and filling the gaps between particles; the accelerated surface area-porosimetry system (BET) showed that with the increase of the voltage and the electrifying time, the small pores, pore volume and pore surface area were augmented while the scale of pore size was narrowed, and the average pore size remained hardly changed.
Key words:  modified sodium silicate    electricity    loess    reinforcing
                    发布日期:  2018-05-08
ZTFLH:  TU472.5  
基金资助: *国家科技支撑计划项目(2013BAJ06B00)
通讯作者:  黄雪峰,男,1960年生,教授,博士研究生导师,主要从事非饱和土与特殊土地基处理研究E-mail:hxfen60@163.com   
作者简介:  方晟:男,1992年生,硕士研究生,主要从事非饱和土与特殊土地基处理研究E-mail:522061911@qq.com
引用本文:    
方晟,黄雪峰,张彭成,周俊鹏,郭楠. 电场改性水玻璃固化黄土机理研究*[J]. 材料导报编辑部, 2017, 31(22): 135-141.
FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate. Materials Reports, 2017, 31(22): 135-141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.027  或          http://www.mater-rep.com/CN/Y2017/V31/I22/135
1 Cheng Jianji. The application of double liquefied silicide method in the buried underground cavity reinforcement engineering[J]. Chin J Rock Mech Eng,1997,16(1):78(in Chinese).
程鉴基.双液化学硅化法在埋藏型地下溶洞加固工程中的应用[J].岩石力学与工程学报,1997,16(1): 78.
2 Luo Yusheng. The foundation reinforcement in the collapsible loess region using the single fluid silicide method[J]. Shanxi Construction, 2006(7):26(in Chinese).
罗宇生.单液硅化加固湿陷性黄土地基[J].陕西建筑, 2006(7):26.
3 Lv Qingfeng, Wu Zhumin, Wang Shengxin, et al. Mechanism of temperature-modification silicification grouted loess[J]. Rock Soil Mech,2013,34(5):1293(in Chinese).
吕擎峰,吴朱敏,王生新,等.温度改性水玻璃固化黄土机制研究[J].岩土力学,2013,34(5):1293.
4 Ikeda K, Feng D, Mikltni Akira. Recent development of geopolymer technique[J]. Earth Sci Frontiers,2005,12(1):206.
5 Xiao Zunqun, Liu Baochen, Qiao Shifan, et al. Experimental research on new grouting materials of acidic water glass-calcium carbonate[J]. Rock Soil Mech,2010,31(9):2829(in Chinese).
肖尊群,刘宝琛,乔世范,等.新型酸性水玻璃-碳酸钙注浆材料试验研究[J].岩土力学,2010,31(9):2829.
6 Li Xue, Zhao Hailei, Li Xingwang, et al. Characteristics of gelation process of H2SO4waterglass system[J]. J Chem Ind Eng,2007,58(2):501(in Chinese).
李雪,赵海雷,李兴旺,等.硫酸水玻璃体系的成胶特点[J].化工学报,2007,58(2):501.
7 Yin Yaxiong, Wang Shengxin, Han Wenfeng, et al. Study on microstructure of CO2-silicification grouted loess[J]. Rock Soil Mech,2008,29(6):1629(in Chinese).
尹亚雄,王生新,韩文峰,等.加气硅化黄土的微结构研究[J].岩土力学,2008,29(6):1629.
8 Rzhanitsyn B A, Sokolovich V E, Ibragimov M N. Experience in chemical grouting of loose carbonate soils with summisoil and carbamide resin[J]. Soil Mech Foundation Eng, 1969,6(4):257.
9 Hu Liming, Wu Weiling, Wu Hui, et al. Theoretical analysis and numerical simulation of electroosmosis consolidation for soft clay[J]. Rock Soil Mech,2010,31(12):3977(in Chinese).
胡黎明,吴伟令,吴辉,等.软土地基电渗固结理论分析与数值模拟[J].岩土力学,2010,31(12):3977.
10 Hong Heqing, Hu Liming, Glend Inning Stephanie, et al. Electroo-smosis experiment of soft clay with external loading[J]. J Tsinghua University(Sci Technol),2009,49(6):825(in Chinese).
洪何清,胡黎明,Glend Inning Stephanie,等.外荷载作用下的软黏土电渗试验[J]. 清华大学学报(自然科学版),2009,49(6):825.
11 Wang Ningwei, Bai Xiaohang, Han Jianhui, et al. Field test of electrochemical modification of soft silty clay[J]. Geotechuical Luvestigatiou Surveying,2014(12):14(in Chinese).
王宁伟,白小航,韩舰辉,等.淤泥质粉质黏土电化学改性加固现场试验[J].工程勘察,2014(12):14.
12 Burnotte F, Lefebvre G, Grondin G. A case record of electroosmotic consolidation of soft clay with improved soil electrode contact[J]. Canadian Geotechnicall J,2004,41(6):1038.
13 Yang Xiaohua, Yu Yonghua. Application of cement-silicate double solution grouting in loesstunnel construction[J]. China J Highway Transport, 2004,17(2):68(in Chinese).
杨晓华 ,俞永华. 水泥-水玻璃双液注浆在黄土隧道施工中的应用[J]. 中国公路学报,2004,17(2):68.
14 Wang Shengxin, Lu Qingfeng, Wang Dekai, et al. Experimental study of clay minerals solidified by sodium silicate[J]. J Central South University(Sci Technol),2013,44(7):2656(in Chinese).
王生新,吕擎峰,王得楷,等.水玻璃固化黏土矿物的试验研究[J].中南大学学报(自然科学版),2013,44(7):2656.
15 Xiao Zunqun, Liu Baochen, Qiao Shifan, et al. Calcium carbonic acid-acid water glass grouting material and comparing test[J]. J Central South University(Sci Technol),2010,41(6):2306(in Chinese).
肖尊群,刘宝琛,乔世范,等.碳酸钙-酸性水玻璃注浆材料对比试验[J].中南大学学报(自然科学版),2010,41(6):2306.
[1] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[2] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[3] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[4] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[5] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[6] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[7] 董怀斌,李长青,邹霞辉. 电场诱导碳纳米管在聚合物中定向有序排列的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 427-433.
[8] 耿安东, 朱永昌, 崔竹, 张浩, 竹含真, 韩勖, 霍冀川. 不同晶核剂对硼硅酸盐钙钛锆石固化体析晶行为及化学稳定性的影响[J]. 材料导报, 2018, 32(22): 3979-3983.
[9] 杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
[10] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[11] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[12] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[13] 刘守庆, 郝旭涛, 周新涛, 贾庆明. 钙系磷酸盐化学键合材料的制备及其固化重金属研究*[J]. 《材料导报》期刊社, 2017, 31(4): 126-130.
[14] 张成光,张 勇,张飞虎. 电化学射流加工的电场仿真及实验研究[J]. 《材料导报》期刊社, 2017, 31(24): 191-199.
[15] 傅明娇,杨海林,吴传明,张 影,尤 超,钱觉时. 温度对含模拟α-高放核废液的磷酸镁水泥固化体性能的影响[J]. 《材料导报》期刊社, 2017, 31(24): 86-90.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed