Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20100024-5    https://doi.org/10.11896/cldb.20100024
  无机非金属及其复合材料 |
复杂环境因素下纳米改性混凝土冻融损伤研究
刘方1,2, 张昆昆1,2, 罗滔1,2, 马卫卫1,2, 蒋伟1,2
1 西京学院土木工程学院,西安 710123
2 陕西省混凝土结构安全与耐久性重点实验室,西安 710123
Study on Freeze-Thaw Damage of Nano-Modified Concrete Under Complex Environmental Factors
LIU Fang1,2, ZHANG Kunkun1,2, LUO Tao1,2, MA Weiwei1,2, JIANG Wei1,2
1 School of Civil Engineering, Xijing University, Xi'an 710123, China
2 Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xi'an 710123, China
下载:  全 文 ( PDF ) ( 7547KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究复杂环境因素作用下纳米材料对混凝土耐久性及劣化规律的影响,本工作对不同种类(SiO2和TiO2)、不同粒径(15 nm和30 nm)及不同掺量(0.2%、0.4%、0.6%、0.8%)(质量分数)的纳米改性混凝土依次进行硫酸盐侵蚀(3 d)和碳化(3 d)劣化处理后进行冻融循环(25次、50次、75次)试验,测定混凝土的质量损失和相对动弹性模量,并采用工业CT(Computer tomography)技术对纳米改性混凝土内部孔隙变化进行研究。结果表明:粒径为15 nm的改性混凝土的耐久性总体上优于粒径为30 nm的改性混凝土;相较于纳米TiO2,纳米SiO2改性混凝土的改善效果较好;含量为0.6%的15 nm SiO2混凝土损伤较小,能较好地改善混凝土内部结构。在硫酸盐侵蚀、碳化和冻融循环依次作用下,15 nm-Nano-SiO2、30 nm-Nano-SiO2和30 nm-Nano-TiO2改性混凝土的孔隙率总体呈先降低后增加的趋势;随着冻融次数的增加,不同含量的纳米改性混凝土孔结构演变规律总体一致,不大于0.01 mm3的孔隙体积占比呈降低的趋势,大于10 mm3的孔隙体积占比呈增加的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘方
张昆昆
罗滔
马卫卫
蒋伟
关键词:  纳米改性混凝土  复杂环境  冻融损伤  工业CT  孔隙率    
Abstract: In order to study the influence of nano-materials on durability and deterioration of concrete under complex environment, nano-modified concrete with different types (SiO2 and TiO2), different particle sizes (15 nm and 30 nm) and different dosage(0.2%,0.4%,0.6%,0.8%) suffered sulfate attack (3 d), carbonation (3 d) and freeze-thaw cycles (25 times, 50 times, 75 times) in turn. The mass loss and relative dynamic elastic modulus of concrete samples were measured. The pore structure evolution was monitored by industrial CT (computer tomography). The results show that the durability of nano-modified concrete with particle size of 15 nm is better than that with particle size of 30 nm in general. Compared with nano-TiO2, the improvement of nano-SiO2 modified concrete is better. The damage of 15 nm-SiO2 concrete with 0.6% content is less, which can improve the internal structure of concrete better. During the process of sulfate attack, carbonation and freeze-thaw cycles, the porosity of 15 nm-nano-SiO2, 30 nm-nano-SiO2 and 30 nm-nano-TiO2 modified concrete generally decreases firstly and then increases. With the increase of freeze-thaw cycles, the pore structure evolution of all nano-particles modified concrete samples have the same regulation. The volume proportion of pores (≤0.01 mm3) decreases monotonously, while the volume proportion of pores (>10 mm3) increases generally.
Key words:  nano-modified concrete    complex environment    freeze-thaw damage    industrial CT    porosity
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51902270);西京学院特区人才科研启动专项基金(XJ21T01)
通讯作者:  luotao19870426@126.com   
作者简介:  刘方,西京学院副教授,硕士研究生导师。博士毕业于哈尔滨工程大学固体力学专业。2012年参与国家公派留学博士联合培养项目(The University of Sydney)。目前主要研究方向为水泥基复合材料耐久性及机理分析,已公开发表学术论文近20篇,其中SCI论文8篇。目前主持国家自然科学基金、国家级重点实验室开放基金、陕西省教育厅专项科研项目、西京学院高层次人才科研启动基金项目等。
罗滔,副教授,硕士研究生导师。2016年12月博士毕业于武汉大学岩土工程专业,曾于2014年7月至2016年6月获CSC资助在澳大利亚联邦大学联合培养两年,陕西高校第四批“青年杰出人才支持计划”人选。现任陕西省混凝土结构安全与耐久性重点实验室常务副主任,陕西高校青年创新团队负责人。主要从事西部寒区水工结构安全与耐久性方面的研究,已在国内外期刊发表学术论文30余篇,其中第一作者SCI/EI检索源刊论文6篇,主持国家自然科学基金青年项目、陕西省自然科学基础研究计划青年项目、陕西省教育厅专项科研计划项目等。
引用本文:    
刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
LIU Fang, ZHANG Kunkun, LUO Tao, MA Weiwei, JIANG Wei. Study on Freeze-Thaw Damage of Nano-Modified Concrete Under Complex Environmental Factors. Materials Reports, 2022, 36(8): 20100024-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100024  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20100024
1 Zhou M Z, Fu S J, Liu F. Concrete,2019(12),111(in Chinese).
周孟真,傅少君,刘方.混凝土,2019(12),111.
2 Nizina A, Balykov A S, Nizin D R, et al. International Journal of Nanotechnology,2019,16(6-10),484.
3 Liu R, Xiao H, Geng J, et al. Construction and Building Materials,2020,244,118297.
4 Wang L S, Lin X. Concrete and Cement Products,2020(1),51(in Chinese).
王丽霖,林雪.混凝土与水泥制品,2020(1),51.
5 Wang K S, Dai G L, Kong F C, et al. Applied Mechanics & Materials,2012,217-219,199.
6 Xing X G, Xu J Y, Bai E L. Bulletin of the Chinese Ceramic Society,2018,32(8),1367(in Chinese).
邢小光,许金余,白二雷.硅酸盐通报,2018,32(8),1367.
7 Zhang C L, Chen W K, Mu S, et al. Construction and Building Mate-rials,2021,285,122806.
8 Shen X H, Liu Q F, Hu Z, et al. Ocean Engineering,2019,189,106350.
9 Jiang W Q, Liu Q F. Journal of the Chinese Ceramic Society,2020,48(2),258(in Chinese).
姜文镪,刘清风.硅酸盐学报,2020,48(2),258.
10 Beigi M H, Berenjian J, Omran O L, et al. Materials and Design,2013,50,1019.
11 Noorvand H, Ali A A A, Demirboga R, et al. Construction and Building Materials,2013,47,1350.
12 Li W, Huang Z, Wang X C, et al. Applied Mechanics and Materials,2014,670-671,387.
13 Xu X, Lu Z Y. Journal of the Chinese Ceramic Society,2007,35(4),478(in Chinese).
徐迅,卢忠远.硅酸盐学报,2007,35(4),478.
14 Lin P T, Zeng Y, Zhao Y G, et al. Bulletin of the Chinese Ceramic Society,2021,40(2),384(in Chinese).
林培桐,曾宇,赵永钢,等.硅酸盐通报,2021,40(2),384.
15 Morgan I L, Ellinger H, Klinksiek R, et al. ACI Journal,1980,77(1),23.
16 Johns R A, Steude J S, Castanier L M. Journal of Geophysical Research-Solid Earth,1998,33(B2),1235.
17 Wang D, Zhang L N, Hou P K, et al. Bulletin of the Chinese Ceramic Society,2020,39(4),1003(in Chinese).
王丹,张丽娜,侯鹏坤,等.硅酸盐通报,2020,39(4),1003.
18 Meng T, Yu Y, Qian X, et al. Construction and Building Materials,2012,29(4),241.
[1] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[2] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[3] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[4] 翟建树, 李春燕, 田霖, 卢煜, 寇生中. Fe基非晶涂层耐腐蚀性能的影响因素及提升措施综述[J]. 材料导报, 2021, 35(3): 3129-3140.
[5] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[6] 曹忠亮, 郭登科, 林国军, 韩振宇, 富宏亚. 热塑性纤维铺放构件的层间剪切强度及孔隙率[J]. 材料导报, 2021, 35(18): 18205-18209.
[7] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[8] 李嘉鹏, 李威翰, 刘嘉良, 李永玲, 李飞. 透水路面制品渗透性能的研究进展[J]. 材料导报, 2020, 34(Z2): 265-268.
[9] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[10] 乔宏霞, 彭宽, 陈克凡, 李江川, 朱翔琛. 陶瓷粉再生混凝土冻融破坏可靠性分析[J]. 材料导报, 2020, 34(10): 10035-10040.
[11] 丁杨, 邓满宇, 周双喜, 王中平, 董晶亮, 魏永起. 基于COMSOL®模拟材料孔隙率与导热系数的演变关系[J]. 材料导报, 2019, 33(z1): 211-215.
[12] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[13] 卢林, 吴文恒, 龙倩蕾, 张亮, 张济山. 喷射成形工艺参数对沉积坯质量的影响[J]. 材料导报, 2019, 33(3): 390-394.
[14] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[15] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed