Please wait a minute...
材料导报  2020, Vol. 34 Issue (10): 10035-10040    https://doi.org/10.11896/cldb.19040278
  无机非金属及其复合材料 |
陶瓷粉再生混凝土冻融破坏可靠性分析
乔宏霞1,2, 彭宽1, 陈克凡1, 李江川1, 朱翔琛1
1 兰州理工大学,甘肃省土木工程防灾减灾重点实验室,兰州 730050
2 兰州理工大学,西部土木工程防灾减灾教育部工程研究中心,兰州 730050
Reliability Analysis of Freeze-thaw Damage of Ceramic Powder Recycled Concrete
QIAO Hongxia1,2, PENG Kuan1, CHEN Kefan1, LI Jiangchuan1, ZHU Xiangchen1
1 Key Laboratory of Disaster Prevention and Reduction in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou 730050, China
2 Western Center of Disaster Mitigation in Civil Engineering of Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 2873KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 为提高废旧陶瓷粉的再生利用率,针对再生混凝土抗冻性较差的特点,研究在不同取代率下,陶瓷粉对再生混凝土抗冻融循环能力的影响。本试验设计了陶瓷粉取代率(均为质量分数)为0%、10%、20%、30%、40%、50%的六组配合比。试验前,基于核磁共振(NMR)原理计算得出各组试件的孔隙分布率、孔隙度及渗透率,并利用MATLAB建立陶瓷粉再生混凝土的孔隙度与渗透率双因素关系图,在每个冻融周期结束后,检测各组试件的质量损失率和相对动弹性模量。基于Palmgren理论建立冻融损伤可靠性计算模型,并预测各组试件的剩余寿命。结果表明: 各组试件在试验过程中,动弹性模量呈下降趋势;质量损失率呈先增大后减小的趋势;当陶瓷粉的替代率为20%时,陶瓷粉再生混凝土孔隙率及渗透度最小,且抗冻融循环能力最强。此外,通过计算验证,基于Palmgren模型的冻融损伤可靠性计算模型的可靠度较高,可以直接反映陶瓷粉再生混凝土可靠性与冻融循环的关系,在实际应用中具有良好的适用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔宏霞
彭宽
陈克凡
李江川
朱翔琛
关键词:  再生混凝土  冻融损伤  核磁共振(NMR)理论  Palmgren模型  可靠性    
Abstract: In order to improve the recycling efficiency of waste ceramic powder, aiming at the poor frost resistance of recycled concrete, the effect of ceramic powder on the freeze-thaw resistance of recycled concrete under different substitution rates was studied. Six groups of mixtures with ceramic powder substitution rates of 0%, 10%, 20%, 30%, 40% and 50% were designed. Before the test, based on the principle of nuclear magnetic resonance (NMR), the porosity distribution, porosity and permeability of each group of specimens were calculated, and the relationship between porosity and permeability of recycled concrete with ceramic powder was established by using MATLAB. After each freeze-thaw cycle, the mass loss rate and relative dynamic modulus of each group of specimens were measured. Based on Palmgren theory, the reliability calculation model of freeze-thaw damage is established, and the residual life of each group of specimens is predicted. The results show that the dynamic modulus of elasticity decreases, the mass loss rate increases first and then decreases. When the replacement rate of ceramic powder is 20%, the porosity and permeability of recycled concrete with ceramic powder are the smallest, and the freeze-thaw cycle resistance is the strongest. In addition, the reliability calculation model of freeze-thaw damage based on Palmgren model has high reliability, which can directly reflect the relationship between the reliability of recycled ceramic powder concrete and freeze-thaw cycle, and has good applicability in practical application.
Key words:  recycled concrete    freeze-thaw damage    NMR theory    Palmgren model    reliability
               出版日期:  2020-05-25      发布日期:  2020-04-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51868044;51468039);甘肃省减震国际科技合作基地专项资助项目(GII2019-TD06)
通讯作者:  彭宽,现为兰州理工大学土木工程学院硕士研究生,在乔宏霞教授的指导下进行研究。目前主要研究领域为再生混凝土耐久性评估与寿命预测。pklut7@163.com   
作者简介:  乔宏霞,兰州理工大学土木工程学院教授、博士研究生导师。2000年 7 月本科毕业于太原理工大学建筑与土木工程学院,2007 年 7 月在兰州理工大学结构工程专业取得博士学位,2009—2012 年在中国科学院青海盐湖研究所化学博士后流动站从事博士后研究工作。现为 AEIC专家库成员、国家科技部核心库专家、教育部学位中心学位论文评审专家、国家自然科学基金项目同行评议专家,入选九三学社中央组织的“院士导师计划”合作导师。主要从事普通混凝土和氯氧镁水泥混凝土耐久性评估与寿命预测的研究工作。近年来,在混凝土领域发表论文90 余篇,包括 Journal of Materials in Civil EngineeringComputers & ConcreteMaterials Research Innovations Journal of Chemical and Pharmaceutical Research 等期刊文献。
引用本文:    
乔宏霞, 彭宽, 陈克凡, 李江川, 朱翔琛. 陶瓷粉再生混凝土冻融破坏可靠性分析[J]. 材料导报, 2020, 34(10): 10035-10040.
QIAO Hongxia, PENG Kuan, CHEN Kefan, LI Jiangchuan, ZHU Xiangchen. Reliability Analysis of Freeze-thaw Damage of Ceramic Powder Recycled Concrete. Materials Reports, 2020, 34(10): 10035-10040.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040278  或          http://www.mater-rep.com/CN/Y2020/V34/I10/10035
1 Somayeh L,Manuel E,Eckhard W.Construction and Building Materials,2015,95,243.
2 Meyer C.Cement & Concrete Composites,2009,31,601.
3 Mustafa A.Information Engineering Research Institute, 2016,22(6),5.
4 Khuram R. Construction and Building Materials,2017,18(7),154.
5 Li Y, Li Q, Kong L,et al. Construction Technology, 2018, 47(3), 40(in Chinese).
李云峰,李强龙,孔令鹏,等.施工技术,2018,47(3),40.
6 Liu Q, Zhang M, Han X, et al.Concrete, 2016 (10), 84(in Chinese).
刘清,张萌,韩霞,等.混凝土,2016(10),84.
7 Li Lei. Mix design and performance study of recycled concrete with mi-neral admixtures in cold regions of Xinjiang. Ph.D. Thesis, Xinjiang University,China,2014(in Chinese).
李蕾. 新疆寒冷地区矿物再生混凝土配合比设计及其性能研究.博士学位论文,新疆大学,2014.
8 Yang Z, Gao S, Yu L.Journal of Building Materials,2019(2),128(in Chinese).
杨正宏,高双双,于龙.建筑材料学报,2019(2),128.
9 Zhang J, Wen Y, Ou X. Journal of Southwest Jiaotong University, 2018, 53(2), 296(in Chinese).
张俊儒,闻毓民,欧小强.西南交通大学学报,2018,53(2),296.
10 Zhou X, He Z, Yang H. Journal of Wuhan University, 2013, 46(5), 604(in Chinese).
周旭,何真,杨华美.武汉大学学报,2013,46(5),604.
11 Siw Y.Journal of Materials in Civil Engineering,2013,15(5),443.
12 Wang D,Zhang J F.Key Engineering Materials,2015,629-630,314.
13 Liu J,Fang X Y,Wang D S. Petroleum Science and Technology,2019,37(10),1138.
14 Sanhanamm C.Cement and Concrete Research,2017,31(6),845.
15 Yang Huijuan. Experimental study on durability of self-compacting concrete with iron tailings sand. Ph.D. Thesis, Hefei University of Techno-logy, China,2013(in Chinese).
杨会娟.铁尾矿砂自密实混凝土耐久性能试验研究.博士学位论文,合肥工业大学,2013.
16 Sibb I.Journal of Materials Engineering,2016,25(8),831.
17 Halit Y.Construction and Building Materials,2016,22,456.
18 Eataazniewska P.Construction and Building Materials,2015,48,178.
[1] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[2] 李恒, 郭庆军, 王家滨. 再生混凝土界面结构及耐久性综述[J]. 材料导报, 2020, 34(13): 13050-13057.
[3] 彭成, 梁爽, 黄福祥, 钟明君, 冉小杰. 键合丝键合界面研究进展[J]. 材料导报, 2019, 33(Z2): 501-504.
[4] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[5] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[6] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[7] 申琦, 余森, 牛金龙, 汶斌斌, 刘少辉, 于振涛. 植介入用精细金属丝材及其异质材料焊接技术研究进展[J]. 材料导报, 2019, 33(13): 2127-2132.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed