Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23020261-14    https://doi.org/10.11896/cldb.23020261
  金属与金属基复合材料 |
金属颗粒增强镁基复合材料制备技术及性能的研究进展
肖璐1,2, 刘婷婷3,*, 陈先华1, 郑开宏4, 潘复生1
1 重庆大学材料科学与工程学院,重庆 400044
2 重庆电子工程职业学院智能制造与汽车学院,重庆 401331
3 西南大学材料与能源学院,重庆 400715
4 广东省科学院新材料研究所,广州 510650
Recent Progress on the Preparation Technology and Properties of Magnesium Matrix Composites Reinforced by Metal Particles
XIAO Lu1,2, LIU Tingting3,*, CHEN Xianhua1, ZHENG Kaihong4, PAN Fusheng1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 School of Intelligent Manufacturing and Automotive, Chongqing College of Electronic Engineering, Chongqing 401331, China
3 School of Materials and Energy, Southwest University, Chongqing, 400715, China
4 Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 32788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁基复合材料具有低的密度、优异的力学性能等特点,在汽车、电子、航空航天等领域有广阔的应用前景。本文综述了国内外金属颗粒增强镁基复合材料的研究进展,详细介绍了金属颗粒增强镁基复合材料常见制备方法的特点,分析了金属颗粒增强镁基复合材料的界面结构和主要强韧化机理。最后,对金属颗粒增强镁基复合材料制备材料及工艺的发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖璐
刘婷婷
陈先华
郑开宏
潘复生
关键词:  金属颗粒  镁基复合材料  增强体  强化机理  界面结构    
Abstract: Magnesium matrix composites with low density and excellent mechanical properties have broad application prospects in automotive, electro-nics, aerospace and other fields. In this paper, the research progress of metal particle-reinforcedmagnesium matrix composites at home and abroad was reviewed, and the characteristics of common preparation methods of metal particle-reinforced magnesium matrix composites were introduced in detail. Moreover, the interfacial structure and main toughness mechanism of metal particle-reinforced magnesium matrix composites were analyzed. Finally, the development of materials and processes for the preparation of metal particle-reinforced magnesium matrix composites has been prospected.
Key words:  metal particles    magnesium matrix composites    reinforcement    strengthening mechanism    interface structure
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG113.1  
  TG13.2  
基金资助: 广东省基础与应用基础研究重大项目(2020B0301030006);广东省科学院建设国内一流研究机构行动专项资金项目(2020GDASYL-20200101001)
通讯作者:  *刘婷婷,西南大学材料与能源学院副教授、硕士研究生导师。2007年于重庆大学材料科学与工程专业本科毕业,2012年于重庆大学材料科学与工程学院硕博连读获得博士学位后到西南大学工作至今。目前主要从事高强度、高塑性镁合金设计理论及开发等方面的研究工作。发表论文30余篇,包括Journal of Magnesium and Alloys、Materials & Design、Materials Science and Engineering:A、Journal of Alloys and Compounds等。ttliu@swu.edu.cn   
作者简介:  肖璐,重庆电子工程职业学院副教授,2013年6月毕业于重庆大学,获工学硕士学位,目前在重庆大学材料科学与工程学院攻读博士学位,在潘复生教授、刘婷婷副教授的指导下进行研究,主要研究领域为新型高性能镁基材料及制备技术。在金属材料领域的核心及以上期刊发表论文10余篇,获重庆市技术发明一等奖,主持重庆市教委科学技术研究项目1项、主持重庆市教委高等职业教育教学改革1项。授权发明专利2项,实用新型专利6项。
引用本文:    
肖璐, 刘婷婷, 陈先华, 郑开宏, 潘复生. 金属颗粒增强镁基复合材料制备技术及性能的研究进展[J]. 材料导报, 2024, 38(17): 23020261-14.
XIAO Lu, LIU Tingting, CHEN Xianhua, ZHENG Kaihong, PAN Fusheng. Recent Progress on the Preparation Technology and Properties of Magnesium Matrix Composites Reinforced by Metal Particles. Materials Reports, 2024, 38(17): 23020261-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020261  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23020261
1 Xu T C, Yang Y, Peng X D, et al. Journal of Magnesium and Alloys, 2019, 7(3), 536.
2 Yang Y, Xiong X M, Chen J, et al. Journal of Magnesium and Alloys, 2021, 9(3), 705.
3 Yu H, Zhou H P, Sun Y, et al. Journal of Alloys and Compounds, 2017, 722, 39.
4 Wu Z X, Ahmad R, Yin B L, et al. Science, 2018, 359, 447.
5 Luo K, Zhang L, Wu G H, et al. Journal of Magnesium and Alloys, 2019, 7(2), 345.
6 Song J F, She J, Chen D L, et al. Journal of Magnesium and Alloys, 2020, 8(1), 1.
7 Lyu J B, Kim J, Liao H X, et al. Materials Science and Engineering:A, 2020, 773, 138735.
8 Ebrahimi M, Zhang L, Wang Q, et al. Journal of Magnesium and Alloys, 2023, 11, 1608.
9 Umeda J, Kawakami M, Kondoh K, et al. Materials Chemistry and Physics, 2010, 123, 649.
10 Shen M J, Zhang M F, Ying W F. Journal of Magnesium and Alloys, 2015, 3(2), 162.
11 Wang X M, Wang X J, Hu X S, et al. Acta Metallurgica Sinica(English Letters), 2016, 29(10), 940.
12 Wang B J, Xu D K, Wang S D, et al. International Journal of Fatigue, 2019, 120, 46.
13 Shen M J, Wang X J, Li C D, et al. Materials & Design (1980-2015), 2014, 54, 436.
14 Zhang X Z, Zhang Q, Hu H. Materials Science and Engineering:A, 2014, 607, 269.
15 Feng Y, Chen C, Peng C Q, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(12), 2385 (in Chinese).
冯艳, 陈超, 彭超群, 等. 中国有色金属学报, 2017, 27(12), 2385.
16 Yang H, Chen X H, Huang G S, et al. Journal of Magnesium and Alloys, 2022, 10(9), 2311.
17 Ye H Z, Liu X Y. Journal of Materials Science, 2004, 39(20), 6153.
18 Zheng M Y, Wu K, Kamado S, et al. Materials Science and Enginee-ring:A, 2003, 348(1-2), 67.
19 Guo G D, Liu E Y, Liu F, et al. Foundry Technology, 2018, 39(11), 2632 (in Chinese).
郭广达, 刘恩洋, 刘甫, 等. 铸造技术, 2018, 39(11), 2632.
20 Kumruoglu L C. Acta Physica Polonica A, 2014, 125, 432.
21 Wang X M. Study on fabrication, microstructure and properties of TC4p/AZ91 magnesium matrix composites. Master's Thesis, Harbin Institute of Technology, China, 2015 (in Chinese).
王晓明. TC4p/AZ91镁基复合材料的制备与组织性能研究. 硕士学位论文, 哈尔滨工业大学, 2015.
22 Pu D M, Wu S F, Yang H, et al. Journal of Materials Research and Technology, 2023, 22, 1362.
23 Nagasivamuni B, Ravi K R. Transactions of the Indian Institute of Metals, 2015, 68(6), 1161.
24 Ye J L, Chen X H, Luo H, et al. Journal of Magnesium and Alloys, 2022, 10(8), 2266.
25 Wang F. Effect of nano-Ti particles on the microstructure and properties of AZ91 alloy and pure magnesium. Master's Thesis, Chongqing University, China, 2021 (in Chinese).
王方. 纳米Ti颗粒添加对AZ91合金及纯镁组织和性能的影响. 重庆大学, 2021.
26 Feng Y, Chen C, Wang R C, et al. Materials Science and Engineering of Powder Metallurgy, 2018, 23(6), 562 (in Chinese).
冯艳, 陈超, 王日初, 等. 粉末冶金材料科学与工程, 2018, 23(6), 562.
27 Guan Z, Li M, Xia K, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(1), 104.
28 Wang X J, Wang X M, Hu X S, et al. Journal of Magnesium and Alloys, 2020, 12(2), 421.
29 Braszczyńska-malik K N, Przełożyńska E. Journal of Alloys and Compounds, 2017, 728, 600.
30 Pu D M, Chen X H, Ding Y, et al. Materials Science and Engineering:A, 2022, 858, 144140.
31 Xie Y, Kang Y H, Li X T, et al. Foundry, 2021, 70(7), 793(in Chinese).
谢耀, 康跃华, 李新涛, 等. 铸造, 2021, 70(7), 793.
32 Long Q S, Wang W W, Ren G X, et al. Foundry Technology, 2016, 37(5), 848(in Chinese).
龙前生, 王伟伟, 任广笑, 等. 铸造技术, 2016, 37(5), 848.
33 Fox R W, Mcdonald A T. Fox and Mcdonald's Introduction to Fluid Mechanics. John Wiley & Sons, USA, 2016, pp.139.
34 Praveenkumar R, Periyasamy P, Mohanavel V, et al. International Journal of Vehicle Structures and Systems, 2019, 11(1), 117.
35 Zhang S B, Yu S R, Xu J, et al. Foundry Technology, 2016, 37(1), 1(in Chinese).
张善保, 于思荣, 许骏, 等. 铸造技术, 2016, 37(1), 1.
36 Wong W, Gupta M. Composites Science and Technology, 2007, 67, 1541.
37 Tun K S, Gupta M. Journal of Alloys and Compounds, 2009, 487, 76.
38 Sankaranarayanan S, Jayalakshmi S, Gupta M. Metals, 2012, 37, 274.
39 Ye J L, Li J B, Luo H, et al. Materials Science and Engineering:A, 2022, 833, 142526.
40 Xi Y L, Chai D L, Zhang W X, et al. Materials Letters, 2005, 59(14), 1831.
41 Rashad M. Investigation on microstructure and mechanical properties of Mg-matrix composites. Ph. D. Thesis, Chongqing University, China, 2014 (in Chinese).
Rashad M. 镁基复合材料微观结构与力学性能研究. 重庆大学, 2014.
42 Rashad M, Pan F S, Asif M, et al. Journal of Magnesium and Alloys, 2015, 3, 1.
43 Yu H. Fabrication and characterisation of microstructure and properties of ultrafine-grained AZ61 magnesium alloy strengthened with Ti dispersions. Ph. D. Thesis, Harbin Institute of Technology, China, 2018(in Chinese).
于欢. Ti弥散强化超细晶AZ61镁合金制备与组织性能研究. 哈尔滨工业大学, 2018.
44 Tang B, Li J B, Wang Y T, et al. Vacuum, 2022, 206, 111534.
45 Zhang J L. Preparation and micro-arc oxidation modification of the microwave sintered Ti-Mg composites. Master's Thesis, Nanchang Aviation University, China, 2019 (in Chinese).
张金龙. 医用Ti-Mg复合材料的微波烧结制备及表面微弧氧化改性研究. 南昌航空大学, 2019.
46 Ye J L, Chen X H, Luo H, et al. Vacuum, 2022, 203, 111287.
47 Sankaranarayanan S, Jayalakshmi S, Gupta M. Materials Science and Engineering:A, 2011, 530, 149.
48 Sankaranarayanan S, Jayalakshmi S, Gupta M. Journal of Alloys and Compounds, 2011, 509(26), 7229.
49 Meenashisundaram G K, Gupta M. Journal of Alloys and Compounds, 2014, 593, 176.
50 Sankaranarayanan S, Sabat R K, Jayalakshmi S, et al. Journal of Alloys and Compounds, 2013, 575, 207.
51 Seetharaman S, Subramanian J, Gupta M, et al. Metals, 2012, 2(3), 274.
52 Nguyen Q B, Gupta M. Materials Science and Engineering:A, 2010, 527(6), 1411.
53 Ho K F, Gupta M, Srivatsan T S. Materials Science and Engineering:A, 2004, 369, 302.
54 Shinde D D, Kolhe V A, International Journal on Emerging Trends in Technology, 2014, 1(1), 194.
55 Lin Y Y, Liu C L, Wu B B, et al. Materials Reports, 2013, 27(15), 139(in Chinese).
林英英, 刘成龙, 吴冰冰, 等. 材料导报, 2013, 27(15), 139.
56 Padhy G K, Wu C S, Gao S. Journal of Materials Science & Technology, 2018, 34(1), 1.
57 Wen W, Yuan F, Pai P. Transactions of Nonferrous Metals Society of China, 2023, 33(8), 2328.
58 Dinaharan I, Zhang S, Chen G Q, et al. Journal of Alloys and Compounds, 2020, 820, 153071.
59 Dinaharan I, Zhang S, Chen G Q, et al. Materials Science and Engineering:A, 2020, 772, 138793.
60 Dinaharan I, Zhang S, Chen G Q, et al. Journal of Magnesium and Alloys, 2021, 10, 979.
61 Vedabouriswaran G, Aravindan S. Journal of Magnesium and Alloys, 2018, 6(2), 145.
62 Morisada Y, Fujii H, Nagaoka T, et al. Materials Science and Enginee-ring:A, 2006, 433(1), 50.
63 Navazani M, Dehghani K. Procedia Materials Science, 2015, 11, 509.
64 Zang Q H, Chen H M, Zhang J, et al. Journal of Materials Research and Technology, 2021, 14, 195.
65 Balakrishnan M, Dinaharan I, Palanivel R, et al. Journal of Magnesium and Alloys, 2015, 3(1), 76.
66 Subramani V, Jayavel B, Sengottuvelu R, et al. Materials, 2019, 12(7), 1044.
67 Dinaharan I, Zhang S, Chen G Q, et al. Journal of Magnesium and Alloys, 2022, 10(4), 979.
68 Garcés G, Pérez P, Adeva P. Scripta Materialia, 2001, 45, 1001.
69 Garcés G, Pérez P, Adeva P. Journal of Alloys and Compounds, 2002, 333, 219.
70 Garcés G, Adeva P. Philosophical Magazine A, 2002, 82, 699.
71 Xiong J P, Liu Y. Journal of Materials Engineering, 2023, 51(1), 1(in Chinese).
熊京鹏, 刘勇. 材料工程, 2023, 51(1), 1.
72 Gupta M, Hassan S F. Journal of Alloys and Compounds, 2002, 335, 1.
73 Kondoh K, Kawakami M, Imai H, et al. Acta Materialia, 2010, 58(2), 606.
74 Li C D, Wang X, Liu W Q, et al. Materials & Design, 2014, 58, 204.
75 Zhang C L, Wang X J, Wang X M, et al. Journal of Magnesium and Alloys, 2016, 4, 286.
76 Sankaranarayanan S, Jayalakshmi S, Gupta M. Materials Science and Engineering:A, 2011, 530, 149.
77 Braszczyńska-malik K N, Przełożyńska E. Journal of Alloys and Compounds, 2018, 731, 1181.
78 Ye H Z, Liu X Y. Journal of Alloys and Compounds, 2005, 402, 162.
79 Ye J L. Microstructure and properties of Ti particles reinforced AZ31 magnesium matrixcomposites. Ph. D. Thesis, Chongqing University, China, 2022 (in Chinese).
叶俊鏐. Ti 颗粒增强 AZ31 镁基复合材料的组织与性能研究. 重庆大学, 2022.
80 Nie J F, Fan Y, Zhao L, et al. Materials Reports, 2021, 35(9), 9009(in Chinese).
聂金凤, 范勇, 赵磊, 等. 材料导报, 2021, 35(9), 9009.
81 He G J. Study on the strengthening mechanism of N-SiCp/AZ91D composites. Master's Thesis, Tsinghua University, China, 2012(in Chinese).
何广进. 纳米SiC颗粒增强AZ91D镁基复合材料的强化机制研究. 清华大学, 2012.
82 Ferguson J B, Sheykh-jaberi F, Kim C S, et al. Materials Science and Engineering:A, 2012, 558, 193.
83 Dai L, Ling Z, Bai Y. Composites Science and Technology, 2001, 61(8), 1057.
84 Nardone V C, Prewo K M. Scripta Metallurgica, 1986, 20(1), 43.
85 Cheng P, Zhao Y H, Lu R P, et al. Materials Science and Engineering:A, 2017, 708, 482.
86 Yu H, Zhou H P, Sun Y, et al. Advanced Powder Technology, 2018, 29(12), 3241.
87 Chen J G, Sun Y, Zhang J S, et al. Journal of Magnesium and Alloys, 2015, 3(2), 121.
88 Nie K B, Wang X J, Wu K, et al. Materials Science and Engineering:A, 2011, 528(29), 8709.
89 Zhang Z, Chen D L. Scripta Materialia, 2006, 54(7), 1321.
90 Wang M, Zhao Y, Wang L D, et al. Carbon, 2018, 139, 954.
91 Yuan Q H. Preparation and mechanical properties of AZ91 alloy compo-site reinforced with nano-carbon materials. Ph. D. Thesis, Nanchang University, China, 2016 (in Chinese).
袁秋红. 纳米碳材料增强AZ91镁基复合材料制备与性能研究. 南昌大学, 2016.
92 Yang M B, Li H L, Duan C Y, et al. Journal of Alloys and Compounds, 2013, 579, 92.
93 Cheng W L, Tian Q W, Huo R, et al. China Foundry, 2016, 13(3), 151.
94 Liu P, Xin Y C, Liu Q. Transactions of Nonferrous Metals Society of China, 2011, 21(4), 880.
95 Wu Y J, Zhu R, Wang J T, et al. Scripta Materialia, 2010, 63(11), 1077.
96 Wang Y X, Zeng X Q, Ding W J, et al. Metallurgical and Materials Transactions A, 2007, 38(6), 1358.
[1] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[2] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[3] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[4] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[5] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[6] 李隆隆, 李良军, 冯军宗, 姜勇刚, 冯坚. 炭气凝胶力学性能增强方法研究进展[J]. 材料导报, 2021, 35(19): 19041-19048.
[7] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[8] 李恒, 郭庆军, 王家滨. 再生混凝土界面结构及耐久性综述[J]. 材料导报, 2020, 34(13): 13050-13057.
[9] 张静, 许海波, 黄悦, 周忠华. 双层透明耐磨超疏水膜层的制备及界面结构控制[J]. 材料导报, 2020, 34(12): 12005-12009.
[10] 谢敬佩, 刘哲, 王爱琴, 吕世敬, 毛志平, 刘帅洋, 田捍卫. 铸轧铜铝复合板界面演变规律研究[J]. 材料导报, 2019, 33(10): 1702-1705.
[11] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[12] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[13] 丁青青,余倩,李吉学,张泽. 铼在镍基高温合金中作用机理的研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 110-115.
[14] 单既万, 胡正飞, 王宇, 姚骋, 张振. 泡沫铝冶金连接及其界面结构与力学性能研究[J]. 《材料导报》期刊社, 2017, 31(8): 94-97.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed