Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19041-19048    https://doi.org/10.11896/cldb.20050248
  无机非金属及其复合材料 |
炭气凝胶力学性能增强方法研究进展
李隆隆, 李良军, 冯军宗, 姜勇刚, 冯坚
国防科技大学新型陶瓷纤维及其复合材料重点实验室,长沙 410073
Methods of Enhancing the Mechanical Properties of Carbon Aerogels: a Review
LI Longlong, LI Liangjun, FENG Junzong, JIANG Yonggang, FENG Jian
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 8303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 炭气凝胶是一类衍生自有机气凝胶的新型多孔炭材料,兼具传统气凝胶低密度、高孔隙率、高比表面积及低热导率等优异特性,以及炭材料耐酸碱、惰性气氛下耐超高温以及良好导电性等一系列优点,在超高温隔热、电化学、吸附、储氢等领域具有广阔的应用前景。然而,纯炭气凝胶质脆易碎、强韧性较差,极大地限制了其工程实际应用。本文首先从炭气凝胶骨架强化出发,介绍了通过优化制备工艺、聚合物交联及构建多重网络骨架结构来实现炭气凝胶力学性能增强的研究进展,然后从增强体复合强化出发,论述了通过添加纤维和碳纳米材料实现炭气凝胶增强、增韧的研究进展,最后提出了其未来可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李隆隆
李良军
冯军宗
姜勇刚
冯坚
关键词:  炭气凝胶  力学性能  骨架强化  增强体强化    
Abstract: As a new type of porous carbon materials derived from organic aerogels, carbon aerogels not only have many excellent properties inherited from traditional aerogels, such as low density, high porosity, high specific surface area and low thermal conductivity of traditional aerogel, but also exhibit a series of specific advantages including acid and alkali resistance, ultra-high temperature resistance in inert atmosphere, and good electrical conductivity according to some current research. Therefore, carbon aerogels have displayed a broad application prospect in the fields of ultra-high temperature thermal insulation, electrochemistry, adsorption, hydrogen storage and so on. However, pure carbon aerogels are brittle and fragile, which severely limits its practical engineering application. This paper mainly reviews worldwide efforts on mechanically enhancing carbon aerogels in recent years from two aspects — strengthening aerogel skeleton (e.g. preparation process optimization, polymer cross-linking, construction of multiple network skeleton structure), and introducing reinforcements (including fibers and carbon nanomaterials). Besides, it also provides a discussion on the future research trends.
Key words:  carbon aerogel    mechanical property    skeleton strengthening    reinforcement enhancement
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TQ174  
基金资助: 国家自然科学基金(51702360)
通讯作者:  fengj@nudt.edu.cn   
作者简介:  李隆隆,2018年6月毕业于河南工业大学,获得工学学士学位。现为国防科技大学空天科学学院硕士研究生,在冯坚研究员的指导下进行研究。目前主要研究领域为纳米炭气凝胶及其复合材料。
冯坚,国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室研究员,博士研究生导师,加拿大英属哥伦比亚大学访问教授。现任中国复合材料学会常务理事,中国硅酸盐学会溶胶-凝胶分会常务理事。主要从事航天用气凝胶高效隔热复合材料制备及其应用技术研究,解决我国先进航天飞行器和导弹热防护系统的瓶颈问题,先后在我国20余个重大工程/重点型号获得实际应用,并推动我国气凝胶民用领域产业化进程。曾获国家科技进步二等奖1项,军队科技进步一等奖1项,国防技术发明一等奖1项,湖南省科技进步二等奖1项,军队科技进步二等奖1项,授权国家发明专利30余项,出版专著1部,以第一或通讯作者发表论文100余篇,SCI他引500余次。
引用本文:    
李隆隆, 李良军, 冯军宗, 姜勇刚, 冯坚. 炭气凝胶力学性能增强方法研究进展[J]. 材料导报, 2021, 35(19): 19041-19048.
LI Longlong, LI Liangjun, FENG Junzong, JIANG Yonggang, FENG Jian. Methods of Enhancing the Mechanical Properties of Carbon Aerogels: a Review. Materials Reports, 2021, 35(19): 19041-19048.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050248  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19041
1 Wiener M, Reichenauer G, Braxmeier S, et al. International Journal of Thermophysics, 2009, 30(4), 1377.
2 Feng J, Jian F, Zhang C. Journal of Porous Materials, 2012, 19(5), 553.
3 Hanzawa Y, Hatori H, Yoshizawa N, et al. Carbon, 2002, 40(4), 576.
4 Bock V, Nilsson O, Blumm J, et al. Journal of Non-Crystalline Solids, 1995, 185(3), 235.
5 Feng J, Jian F, Jiang Y, et al. Materials Letters, 2011, 65(23-24), 3455.
6 Shi D, Sun Y, Feng J, et al. Materials Science and Engineering: A, 2013, 585, 28.
7 Zhou T, Cheng X, Pan Y, et al. Applied Surface Science, 2018, 437, 323.
8 Zou W, Wang X, Wu Y, et al. Ceramics International, 2019, 45(1), 646.
9 Yu H, Jiang Y, Lu Y, et al. Journal of Non-Crystalline Solids, 2019, 505, 81.
10 Yu Y, Peng K, Fang J, et al. International Journal of Applied Ceramic Technology, 2018, 15(5), 1140.
11 Zhang G, Dass A, Rawashdeh A M M, et al. Journal of Non-Crystalline Solids, 2004, 350, 153.
12 Gupta N, Ricci W. Journal of Materials Processing Technology, 2008, 198(1-3), 179.
13 Ilhan F, Fabrizio E F, Mccorkle L, et al. Journal of Materials Chemistry, 2006, 16(29), 3048.
14 Shimizu T, Kanamori K, Nakanishi K. Chemistry-A European Journal, 2017, 23(22), 5181.
15 Loy D A, Jamison G M, Baugher B M, et al. Journal of Non-Crystalline Solids, 1995, 186, 47.
16 Shea K J, Loy D A. Chemistry of Materials, 2001, 13(10), 3309.
17 Aghabararpour M, Mohsenpour M, Motahari S, et al. Journal of Non-Crystalline Solids, 2018, 481, 550.
18 Brandt R, Petricevic R, Pröbstle H, et al. Journal of Porous Materials, 2003, 10(3), 173.
19 Scherdel C, Scherb T, Reichenauer G. Carbon, 2009, 47(9), 2245.
20 Job N, Pirard R, Marien J, et al. Carbon, 2004, 42(3), 621.
21 Alshrah M, Tran M P, Gong P, et al. Journal of Colloid and Interface Science, 2017, 485, 66.
22 Einarsrud M A, Nilsen E, Rigacci A, et al. Journal of Non-Crystalline Solids, 2001, 285(1-3), 2.
23 Kanamori K, Nakanishi K. Chemical Society Reviews,2011,40(2),755.
24 Despetis F, Barral K, Kocon L, et al. Journal of Sol-Gel Science and Technology, 2000, 19(1-3), 830.
25 Mulik S, Sotiriou-Leventis C, Churu G, et al. Chemistry of Materials, 2008, 20(15), 5037.
26 Aghabararpour M, Mohsenpour M, Motahari S, et al. Journal of Applied Polymer Science, 2019, 136(46), 48196.
27 Aghabararpour M, Mohsenpour M, Motahari S. Materials Research Express, 2019, 6(7), 075059.
28 Mulik S, Sotiriou-Leventis C, Leventis N. Chemistry of Materials, 2008, 20(22), 6987.
29 Jia X, Dai B, Zhu Z, et al. Carbon, 2016, 108, 553.
30 Seraji M M, Ghafoorian N S, Bahramian A R, et al. Journal of Non-Crystalline Solids, 2015, 425, 148.
31 Ghafoorian N S, Bahramian A R, Seraji M M. Materials & Design, 2015, 86, 280.
32 Chen K, Bao Z, Du A, et al. Microporous and Mesoporous Materials, 2012, 149(1), 18.
33 Kong Y, Shen X, Cui S, et al. Ceramics International, 2014, 40(6), 8267.
34 Worsley M A, Kuntz J D, Satcher Jr J H, et al. Journal of Materials Chemistry, 2010, 20(23), 4841.
35 An Z, Ye C, Zhang R, et al. Journal of Sol-Gel Science and Technology, 2019, 89(3), 625.
36 Zera E, Campostrini R, Aravind P R, et al. Advanced Engineering Materials, 2014, 16(6), 814.
37 Zhong Y, Kong Y, Shen X, et al. Microporous and Mesoporous Mate-rials, 2013, 172, 183.
38 Schmitt C, Pröbstle H, Fricke J. Journal of Non-Crystalline Solids, 2001, 285(1-3), 278.
39 Wang J, Glora M, Petricevic R, et al. Journal of Porous Materials, 2001, 8(2), 160.
40 Yang J, Li S, Luo Y, et al. Carbon, 2011, 49(5), 1547.
41 Leventis N, Chandrasekaran N, Sadekar A G, et al. Journal of the American Chemical Society, 2009, 131(13), 4576.
42 Liu B, Ju W, Zhang J, et al. Journal of Sol-Gel Science and Technology, 2017, 83(1), 102.
43 Hrubesh L W. U.S. patent application, US20030134916A1, 2003.
44 Zhao L, Zhao J, Sun X, et al. Synthetic Metals, 2015, 205, 65.
45 Guo K, Hu Z, Song H, et al. RSC Advances, 2015, 5(7), 5199.
46 Fu R, Zheng B, Liu J, et al. Journal of Materials Research, 2003, 18(12), 2767.
47 Petričević R, Glora M, Fricke J. Carbon, 2001, 39(6), 860.
48 Glora M, Wiener M, Petričević R, et al. Journal of Non-Crystalline Solids, 2001, 285(1-3), 285.
49 Guan Y Q, Jiang Y G, Feng J Z, et al. Materials Reports, 2017, 31(S1), 430 (in Chinese).
关蕴奇, 姜勇刚, 冯军宗, 等.材料导报, 2017, 31(S1), 430.
50 Drach V, Wiener M, Reichenauer G, et al. International Journal of Thermophysics, 2007, 28(5), 1545.
51 Seraji M M, Kianersi S, Hosseini S H, et al. Journal of Non-Crystalline Solids, 2018, 491, 90.
52 Feng J, Zhang C, Feng J, et al. ACS Applied Materials & Interfaces, 2011, 3(12), 4797.
53 Feng J, Zhang C, Feng J. Materials Letters, 2012, 67(1), 266.
54 Allahbakhsh A, Bahramian A R. Nanoscale, 2015, 7(34), 14143.
55 Dolmatov V. Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds, Volume I, CRC Press, USA, 2016.
56 Abdalla S, Al-Marzouki F, Al-Ghamdi A A, et al. Nanoscale Research Letters, 2015, 10(1), 2.
57 Ajayan P M, Tour J M. Nature, 2007, 447(7148), 1067.
58 Foygel M, Morris R D, Anez D, et al. Physical Review B, 2005, 71(10), 104201.
59 Worsley M A, Satcher Jr J H, Baumann T F. Langmuir, 2008, 24(17), 9763.
60 Worsley M A, Kucheyev S O, Satcher J J H, et al. Applied Physics Letters, 2009, 94(7), 073115.
61 Worsley M A, Pauzauskie P J, Kucheyev S O, et al. Acta Materialia, 2009, 57(17), 5133.
62 Hilding J, Grulke E A, Zhang Z G, et al. Journal of Dispersion Science and Technology, 2003, 24(1), 38.
63 Zhang Y, Fan W, Huang Y, et al. RSC Advances, 2015, 5(2), 1304.
64 Yue C, Feng J, Feng J, et al. RSC advances, 2016, 6(12), 9397.
65 Podsiadlo P, Kaushik A K, Arruda E M, et al. Science, 2007, 318(5847), 81.
66 Cai D, Song M. Journal of Materials Chemistry, 2010, 20(37), 7910.
67 Sun W, Du A, Zhou B, et al. Journal of Sol-Gel Science and Technology, 2016, 80(1), 70.
68 Sun W, Du A, Gao G, et al. Microporous and Mesoporous Materials, 2017, 253, 72.
69 Kim C H J, Zhao D, Lee G, et al. Advanced Functional Materials, 2016, 26(27), 4980.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed