Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23120177-8    https://doi.org/10.11896/cldb.23120177
  金属与金属基复合材料 |
AA7075-T6铝合金电阻点焊工艺参数优化研究
邱飒蔚1,2, 蒋家传3, 叶拓1,2, 张越3,*, 雷贝3, 王涛3
1 湖南工学院智能制造与机械工程学院,湖南 衡阳 421002
2 湖南工学院汽车零部件技术研究院,湖南 衡阳 421002
3 湘潭大学机械工程与力学学院,湖南 湘潭 411105
Optimisation of Process Parameters for Resistance Spot Welding of AA7075-T6 Aluminium Alloy
QIU Sawei1,2, JIANG Jiachuan3, YE Tuo1,2, ZHANG Yue3,*, LEI Bei3, WANG Tao3
1 School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, Hunan, China
3 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 31383KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 轻量化结构设计在保证了结构强度的前提下降低了整车质量,减少了能量消耗,成为汽车工业和航空航天的研究重点。本工作通过建立正交实验获取AA7075-T6铝合金的最佳焊接工艺参数。对接头进行拉伸剪切实验、金相观察和显微硬度测试,并对最优参数组合进行数值模拟,以研究焊接工艺参数对接头质量的影响。结果表明:当焊接时间为60 ms、焊接电流为17 kA、电极压力为0.22 MPa时,点焊接头的综合力学性能最好;焊接参数对电阻点焊接头力学性能的影响顺序为焊接时间>焊接电流>电极压力。焊接过程数值模拟得到的熔核尺寸与实验结果一致。焊接过程发生飞溅和熔核存在缩孔缺陷,导致接头的力学性能较差,失效模式为界面断裂。由于焊接过程接头显微组织发生变化,接头显微硬度变化呈“W”形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱飒蔚
蒋家传
叶拓
张越
雷贝
王涛
关键词:  AA7075-T6铝合金  电阻点焊(RSW)  工艺参数  显微硬度  数值模拟    
Abstract: The lightweight structural design has emerged as a prominent research priority in the automotive industry and aerospace sectors due to its capacity for reducing overall vehicle weight and energy consumption while ensuring structural strength. This work presented the optimal welding process parameters for AA7075-T6 aluminium alloy, which were determined through orthogonal experiments. Tensile shear tests, metallographic observations, and microhardness tests were performed on the joints, followed by numerical simulations of the optimal parameter combinations to investigate the impact of welding process parameters on joint quality. The results demonstrate that spot welded joints exhibit superior integrated mechanical properties when subjected to a welding time of 60 ms, a welding current of 17 kA, and an electrode pressure of 0.22 MPa. It was observed that the order of influence exerted by welding parameters on mechanical properties of resistance spot weld joints is as follows:welding time > welding current > electrode pressure. The nugget size obtained from numerical simulation aligns with experimental findings. Spattering and the shrinkage defects occur within the nugget during the welding process, leading to compromised mechanical properties in joints and interfacial fracture failure modes. Due to alterations in microstructure within joints during the welding process, microhardness exhibits a ‘W' shape.
Key words:  AA7075-T6 aluminium alloy    resistance spot welding(RSW)    process parameters    microhardness    numerical simulation
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG44  
基金资助: 国家自然科学基金(52201074;51901199);湖南省优秀博士后创新人才项目(2021RC2093)
通讯作者:  *张越,湘潭大学机械工程与力学学院副教授、硕士研究生导师。2018年昆明理工大学机械制造及其自动化专业博士毕业,目前主要从事轻量化与成形技术等方面的研究工作。发表论文20余篇,包括《机械工程学报》,Materials & Design、International Journal of Advanced Manufacturing Technology、Engineering Fracture Mechanics、International Journal of Precision Engineering and Manufacturing-Green Technology等。zhangyuely2009@126.com   
作者简介:  邱飒蔚,湖南工学院智能制造与机械工程学院讲师。2022年6月湖南大学机械工程专业博士毕业。目前主要从事金属材料塑性成形、材料轻量化设计研究。发表论文10余篇,包括Structural and Multidisciplinary Optimization、Computational Materials Science、Rare Metal Materials and Engineering、Applied Thermal Engineering等。
引用本文:    
邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
QIU Sawei, JIANG Jiachuan, YE Tuo, ZHANG Yue, LEI Bei, WANG Tao. Optimisation of Process Parameters for Resistance Spot Welding of AA7075-T6 Aluminium Alloy. Materials Reports, 2024, 38(17): 23120177-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120177  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23120177
1 Cui J J, Dong D Y, Wang Q, et al. Journal of Mechanical Engineering, 2021, 57(2), 70 (in Chinese).
崔俊佳, 董东营, 王琼, 等. 机械工程学报, 2021, 57(2), 70.
2 You J H. Feng Y, Wen T, et al. Materials Reports, 2022, 36(S2),367 (in Chinese).
游建豪, 冯毅, 温彤, 等. 材料导报, 2022, 36(S2), 367.
3 Chen Y J, Li S W, Meng X M, et al. Materials Reports, 2023, 37(13), 209 (in Chinese).
陈亚军, 李思伟, 孟宪明, 等. 材料导报, 2023, 37(13), 209.
4 Piott M, Werber A, Schleuss L, et al. International Journal of Advanced Manufacturing Technology, 2020, 111(5-6), 1671.
5 Qiu R F, Zhang Z L, Zhang K K, et al. Journal of Materials Engineering and Performance, 2011, 20(3), 355.
6 Zhang Z H, Li X Q, Zhu D Z, et al. Transactions of the China Welding Institution, 2022, 43(11), 68 (in Chinese).
张泽桦, 李小强, 朱德智, 等. 焊接学报, 2022, 43(11), 68.
7 Li Y, Luo Z, Yan F, et al. Materials & Design, 2014, 56, 1025.
8 Chen Y D. Chen F R. Journal of Mechanical Engineering, 2017, 53(8), 91 (in Chinese).
岑耀东, 陈芙蓉. 机械工程学报, 2017, 53(8), 91.
9 Afshari D, Sedighi M, Barsoum Z, et al. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2012, 226(B6), 1026.
10 Pereira A M, Ferreira J M, Loureiro A, et al. Materials & Design, 2010, 31(5), 2454.
11 Pawar S, Singh A K, Park K S, et al. Materials Characterization, 2023, 203, 113126.
12 Verma R, Arora K S, Sharma L, et al. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2021, 235(2), 505.
13 Kim G C, Hwang I, Kang M, et al. Metals and Materials International, 2019, 25(1), 207.
14 Pal T K, Bhowmick K. Journal of Materials Engineering and Performance, 2012, 21(2), 280.
15 Hassanifard S, Zehsaz M. Procedia Engineering, 2010, 2(1), 1077.
16 Mao Z D, Kan Y, Jiang Y L, et al. Journal of Mechanical Engineering, 2020, 56(16), 84 (in Chinese).
毛镇东, 阚盈, 姜云禄, 等. 机械工程学报, 2020, 56(16), 84.
17 Ghanbari H R, Shariati M, Sanati E, et al. Engineering Failure Analysis, 2022, 134, 106079.
18 Liu H, Zhu Y, Tian Y, et al. Materials Research, 2023, 26, e20220373.
19 Vigneshkumar M, Varthanan P A, Raj Y M A. Transactions of the Indian Institute of Metals, 2019, 72(2), 429.
20 Yang X, Meng T, Su Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2024, 891, 146024.
21 Guo Z, Ma T, Yang X, et al. Chinese Journal of Aeronautics, 2024, 37(1), 312.
22 Mao Y, Ke L, Chen Y, et al. Journal of Materials Science & Technology, 2018, 34(1), 228.
23 Shen Z, Yang X, Zhang Z, et al. Materials & Design, 2013, 44, 476.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[4] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[7] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[8] 傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
[9] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[10] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[11] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[12] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[13] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[14] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[15] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed