Optimisation of Process Parameters for Resistance Spot Welding of AA7075-T6 Aluminium Alloy
QIU Sawei1,2, JIANG Jiachuan3, YE Tuo1,2, ZHANG Yue3,*, LEI Bei3, WANG Tao3
1 School of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China 2 Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, Hunan, China 3 School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, Hunan, China
Abstract: The lightweight structural design has emerged as a prominent research priority in the automotive industry and aerospace sectors due to its capacity for reducing overall vehicle weight and energy consumption while ensuring structural strength. This work presented the optimal welding process parameters for AA7075-T6 aluminium alloy, which were determined through orthogonal experiments. Tensile shear tests, metallographic observations, and microhardness tests were performed on the joints, followed by numerical simulations of the optimal parameter combinations to investigate the impact of welding process parameters on joint quality. The results demonstrate that spot welded joints exhibit superior integrated mechanical properties when subjected to a welding time of 60 ms, a welding current of 17 kA, and an electrode pressure of 0.22 MPa. It was observed that the order of influence exerted by welding parameters on mechanical properties of resistance spot weld joints is as follows:welding time > welding current > electrode pressure. The nugget size obtained from numerical simulation aligns with experimental findings. Spattering and the shrinkage defects occur within the nugget during the welding process, leading to compromised mechanical properties in joints and interfacial fracture failure modes. Due to alterations in microstructure within joints during the welding process, microhardness exhibits a ‘W' shape.
通讯作者: *张越,湘潭大学机械工程与力学学院副教授、硕士研究生导师。2018年昆明理工大学机械制造及其自动化专业博士毕业,目前主要从事轻量化与成形技术等方面的研究工作。发表论文20余篇,包括《机械工程学报》,Materials & Design、International Journal of Advanced Manufacturing Technology、Engineering Fracture Mechanics、International Journal of Precision Engineering and Manufacturing-Green Technology等。zhangyuely2009@126.com
作者简介: 邱飒蔚,湖南工学院智能制造与机械工程学院讲师。2022年6月湖南大学机械工程专业博士毕业。目前主要从事金属材料塑性成形、材料轻量化设计研究。发表论文10余篇,包括Structural and Multidisciplinary Optimization、Computational Materials Science、Rare Metal Materials and Engineering、Applied Thermal Engineering等。
引用本文:
邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
QIU Sawei, JIANG Jiachuan, YE Tuo, ZHANG Yue, LEI Bei, WANG Tao. Optimisation of Process Parameters for Resistance Spot Welding of AA7075-T6 Aluminium Alloy. Materials Reports, 2024, 38(17): 23120177-8.
1 Cui J J, Dong D Y, Wang Q, et al. Journal of Mechanical Engineering, 2021, 57(2), 70 (in Chinese). 崔俊佳, 董东营, 王琼, 等. 机械工程学报, 2021, 57(2), 70. 2 You J H. Feng Y, Wen T, et al. Materials Reports, 2022, 36(S2),367 (in Chinese). 游建豪, 冯毅, 温彤, 等. 材料导报, 2022, 36(S2), 367. 3 Chen Y J, Li S W, Meng X M, et al. Materials Reports, 2023, 37(13), 209 (in Chinese). 陈亚军, 李思伟, 孟宪明, 等. 材料导报, 2023, 37(13), 209. 4 Piott M, Werber A, Schleuss L, et al. International Journal of Advanced Manufacturing Technology, 2020, 111(5-6), 1671. 5 Qiu R F, Zhang Z L, Zhang K K, et al. Journal of Materials Engineering and Performance, 2011, 20(3), 355. 6 Zhang Z H, Li X Q, Zhu D Z, et al. Transactions of the China Welding Institution, 2022, 43(11), 68 (in Chinese). 张泽桦, 李小强, 朱德智, 等. 焊接学报, 2022, 43(11), 68. 7 Li Y, Luo Z, Yan F, et al. Materials & Design, 2014, 56, 1025. 8 Chen Y D. Chen F R. Journal of Mechanical Engineering, 2017, 53(8), 91 (in Chinese). 岑耀东, 陈芙蓉. 机械工程学报, 2017, 53(8), 91. 9 Afshari D, Sedighi M, Barsoum Z, et al. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2012, 226(B6), 1026. 10 Pereira A M, Ferreira J M, Loureiro A, et al. Materials & Design, 2010, 31(5), 2454. 11 Pawar S, Singh A K, Park K S, et al. Materials Characterization, 2023, 203, 113126. 12 Verma R, Arora K S, Sharma L, et al. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2021, 235(2), 505. 13 Kim G C, Hwang I, Kang M, et al. Metals and Materials International, 2019, 25(1), 207. 14 Pal T K, Bhowmick K. Journal of Materials Engineering and Performance, 2012, 21(2), 280. 15 Hassanifard S, Zehsaz M. Procedia Engineering, 2010, 2(1), 1077. 16 Mao Z D, Kan Y, Jiang Y L, et al. Journal of Mechanical Engineering, 2020, 56(16), 84 (in Chinese). 毛镇东, 阚盈, 姜云禄, 等. 机械工程学报, 2020, 56(16), 84. 17 Ghanbari H R, Shariati M, Sanati E, et al. Engineering Failure Analysis, 2022, 134, 106079. 18 Liu H, Zhu Y, Tian Y, et al. Materials Research, 2023, 26, e20220373. 19 Vigneshkumar M, Varthanan P A, Raj Y M A. Transactions of the Indian Institute of Metals, 2019, 72(2), 429. 20 Yang X, Meng T, Su Y, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2024, 891, 146024. 21 Guo Z, Ma T, Yang X, et al. Chinese Journal of Aeronautics, 2024, 37(1), 312. 22 Mao Y, Ke L, Chen Y, et al. Journal of Materials Science & Technology, 2018, 34(1), 228. 23 Shen Z, Yang X, Zhang Z, et al. Materials & Design, 2013, 44, 476.