Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (13): 85-89    https://doi.org/10.11896/j.issn.1005-023X.2017.013.011
  材料综述 |
车用轻量化铝合金材料本构关系研究进展*
张文沛1,2,3, 李欢欢1,2,3, 胡志力2,3, 秦训鹏2,3
1 武汉理工大学材料科学与工程学院,武汉 430070;
2 现代汽车零部件技术湖北省重点实验室,武汉 430070;
3 汽车零部件技术湖北省协同创新中心,武汉 430070
Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting
ZHANG Wenpei1,2,3, LI Huanhuan1,2,3, HU Zhili2,3, QIN Xunpeng2,3
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070;
2 Hubei Province Key Laboratory of Modern Automotive Technology, Wuhan 430070;
3 Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan 430070
下载:  全 文 ( PDF ) ( 1471KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 综述了车用轻量化铝合金材料塑性流变行为的建模。随着成形技术与设备的进步,铝合金的成形方式已不再局限于传统的冷成形,热成形与高速成形的新工艺不断涌现,对本构模型的准确性要求也不断提高。由此,高温下材料的本构关系已成为研究的热点,并进一步将微观组织结构的演变包括位错运动和损伤演化等耦合到本构模型中,提高了本构模型的准确性。这些模型被证明能够较好地描述材料的塑性流变行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文沛
李欢欢
胡志力
秦训鹏
关键词:  铝合金  本构模型  微观组织  结构演变    
Abstract: The progress of modeling the plastic rheological behavior of aluminum alloy which can be used for automobile lightweighting is reviewed. With the development of forming technology and equipment, the forming methods of aluminum alloy are not confined to traditional cold forming any more. The technology of hot forming and high-velocity forming continuously appears and the requirement for the accuracy of constitutive model is improving. In consequence, the constitutive relationship of aluminum alloy at elevated temperature becomes a research focus and microstructure evolution is incorporated into constitutive model in order to improve its accuracy, including the dislocation movement and damage evolution. These models are proved to be able to describe the plastic rheological behavior of materials well.
Key words:  aluminum alloy    constitutive model    microstructure    structural evolution
               出版日期:  2017-07-10      发布日期:  2018-05-04
ZTFLH:  TG146.2  
基金资助: *国家自然科学基金(51405358);中国汽车产业创新发展联合基金(U1564202);中国博士后科学基金特别资助项目(2015T80844)
通讯作者:  胡志力:通讯作者,男,1983年生,博士,副教授,主要从事汽车轻量化技术的研究 E-mail:zhilihuhit@163.com   
作者简介:  张文沛:男,1993年生,硕士研究生,主要从事汽车轻量化技术的研究 E-mail:wpzhang93@163.com
引用本文:    
张文沛, 李欢欢, 胡志力, 秦训鹏. 车用轻量化铝合金材料本构关系研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 85-89.
ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting. Materials Reports, 2017, 31(13): 85-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.013.011  或          http://www.mater-rep.com/CN/Y2017/V31/I13/85
1 Peng Xiaodong, Li Yulan, Liu Jiang. The applications of light alloys to automotive industry[J]. Mater Mechan Eng,1999,23(2):1(in Chinese).
彭晓东, 李玉兰, 刘江. 轻合金在汽车上的应用[J]. 机械工程材料,1999,23(2):1.
2 Lin J, Dean T A. Modelling of microstructure evolution in hot for-kming using unified constitutive equations[J]. J Mater Process Tech-nol,2005,167(2-3):354.
3 Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague:IBC,1983:541.
4 Zhang Zhengli. Construction of dynamic mechanical constitutive model of 2024 aluminum[J]. J Shenyang Aerospace University,2014,31(2):47(in Chinese).
张正礼. 2024铝合金动态力学本构模型构建[J]. 沈阳航空航天大学学报,2014,31(2):47.
5 Tan J Q, Zhan M, Liu S, et al. A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates[J]. Mater Sci Eng A,2015,631(1):214.
6 Boldyrev I S, Shchurov I A, Nikonov A V. Numerical simulation of the aluminum 6061-T6 cutting and the effect of the constitutive material model and failure criteria on cutting forces′ prediction[J]. Procedia Eng,2016,150:866.
7 Kordkheili S A H, Ashrafian M M, Toozandehjani H. A rate-dependent constitutive equation for 5052 aluminum diaphragms[J]. Mater Des,2014,60(8):13.
8 Uemori T, Sumikawa S, Naka T, et al. Observations of cyclic deformation behaviors of aluminum sheet and constitutive modeling[J]. Procedia Eng,2014,81:933.
9 Fields D S, Backofen W A. Determination of strain hardening cha-racteristics by torsion testing[J]. Proc Soc Test Mater,1957,57:1259.
10 Ying Liang, Dai Minghua, et al. Thermal constitutive model and numerical simulation of hot forming for 6061-T6 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(7):1815(in Chinese).
盈亮, 戴明华,等. 6061-T6铝合金高温本构模型及温成形数值模拟[J]. 中国有色金属学报,2015,25(7):1815.
11 Liu W H, He Z T, Chen Y Q, et al. Dynamic mechanical properties and constitutive equations of 2519A aluminum alloy[J]. Trans Nonferrous Met Soc China,2014,24(7):2179.
12 Bobbili R, Paman A, Madhu V. High strain rate tensile behavior of Al-4.8Cu-1.2Mg alloy[J]. Mater Sci Eng A,2016,651:753.
13 Trimble D, O′Donnell G E. Flow stress prediction for hot deformation processing of 2024Al-T3 alloy[J]. Trans Nonferrous Met Soc China,2016,26(5):1232.
14 Pare V, Modi S, Jonnalagadda K N. Thermo-mechanical behavior and bulk texture studies on AA5052-H32 under dynamic compression[J]. Mater Sci Eng A,2016,668:38.
15 Sun Y, Ye W H, Hu L X. Constitutive modeling of high-temperature flow behavior of Al-0.62Mg-0.73Si aluminum alloy[J]. J Mater Eng Perform,2016,25(4):1621
16 Saravanan L, Senthilvelan T. Constitutive equation and microstructure evaluation of an extruded aluminum alloy[J]. J Mater Res Technol,2016,5(1):21.
17 Asgharzadeh A, Aval H J, Serajzadeh S. A study on flow behavior of AA5086 over a wide range of temperatures[J]. J Mater Eng Perform,2016,25(3):1076.
18 Ashtiani H R R, Shahsavari P. Strain-dependent constitutive equations to predict high temperature flow behavior of AA2030 aluminum alloy[J]. Mechan Mater,2016,100:209.
19 Khan A S, Liu H. Variable strain rate sensitivity in an aluminium alloy: Response and constitutive modeling[J]. Int J Plast,2012,36(9):1.
20 Trimble D, O′Donnell G E. Constitutive modelling for elevated temperature flow behaviour of AA7075[J]. Mater Des,2015,76:150.
21 Voyiadjis G Z, Almasri A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechan Mater,2008,40(6):549.
22 Kabirian F, Khan A S, Pandey A. Negative to positive strain rate sensitivity in 5xxx series aluminum alloys: Experiment and constitutive modeling[J]. Int J Plast,2014,55:232.
23 Subroto T, Miroux A, Eskin D G, et al. Tensile mechanical properties, constitutive parameters and fracture characteristics of an as-cast AA7050 alloy in the near-solidus temperature regime[J]. Mater Sci Eng A,2017,679:28.
24 Xiao G, Yang Q W, Li L X. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method[J]. Trans Nonferrous Met Soc China,2016,26(4):1096.
25 Estrin Y. Dislocation theory based constitutive modelling: Foundations and applications[J]. J Mater Process Technol,1998,80-81(98):33.
26 Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation[J]. J Mater Process Technol,2003,s143-144(1):281.
27 Fu Lei, Wang Baoyu, Lin Jianguo, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J]. J University of Science and Technology Beijing,2013,35(10):1333(in Chinese).
傅垒, 王宝雨, 林建国, 等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,2013,35(10):1333.
28 Lin J, Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys[J]. Int J Plast,1999,15(11):1181.
29 Summers P T, Mouritz A P, Case S W, et al. Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116[J]. Mater Sci Eng A,2015,632:14.
30 Lin J, Cheong B H, Yao X. Universal multi-objective function for optimising superplastic-damage constitutive equations[J]. J Mater Process Technol,2002,125(2):199.
31 Ma Wenyu, Wang Baoyu, Zhou Jing, et al. Damage constitutive model for thermal deformation of AA6082 aluminum alloy[J]. Chinese J Nonferrous Met,2015,25(3):595(in Chinese).
马闻宇, 王宝雨, 周靖, 等. AA6082铝合金热变形损伤本构模型[J]. 中国有色金属学报,2015,25(3):595.
32 Ma W Y, Wang B Y, Bian J H, et al. A new damage constitutive model for thermal deformation of AA6111 sheet[J]. Metall Mater Trans A,2015,46(6):2748.
33 Hu P, Meng Q C, Hu W P, et al. A continuum damage mechanics approach coupled with an improved pit evolution model for the corrosion fatigue of aluminum alloy[J]. Corros Sci,2016,113:78.
34 Ganjiani M. A damage model incorporating dynamic plastic yield surface[J]. J Comput Appl Mech,2016,47(1):11.
35 Zhuang Weimin, Li Bingjiao, Xie Dongxuan. Thermoforming process optimization for B pillar of 7075 aluminum alloy based on damage factor[J]. Automotive Eng,2015,37(11):1353(in Chinese).
庄蔚敏, 李冰娇, 解东旋. 基于损伤因子的7075铝合金B柱热成形工艺优化[J]. 汽车工程,2015,37(11):1353.
36 Lin J. Selection of material models for predicting necking in superplastic forming[J]. Int J Plast,2003,19(4):469.
37 Yan S L, Yang H, Li H W, et al. A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation[J]. Int J Plast,2016,85:203.
38 Austin R A, Mcdowell D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates[J]. Int J Plast,2011,27(1):1.
39 Pham M S, Iadicola M, Creuziger A, et al. Thermally-activated constitutive model including dislocation interactions, aging and recovery for strain path dependence of solid solution strengthened alloys: Application to AA5754-O[J]. Int J Plast,2015,75:226.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[5] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[6] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[7] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[8] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[9] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[10] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[11] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[12] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[13] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[14] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[15] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed