Please wait a minute...
材料导报  2022, Vol. 36 Issue (21): 21010158-7    https://doi.org/10.11896/cldb.21010158
  金属与金属基复合材料 |
30Cr4MoNiV超高强度钢热变形本构方程的构建与优化
陈刚1,*, 姚远超1, 贾寓真2,3, 苏斌1, 刘国跃2,3, 曾斌4
1 湖南大学材料科学与工程学院,长沙 410082
2 湖南省锯切工程技术研究中心,长沙410200
3 湖南泰嘉新材料科技股份有限公司,长沙 410200
4 湖南华菱涟源钢铁有限公司,湖南 娄底 417000
Construction and Optimization of Hot Deformation Constitutive Equation of 30Cr4MoNiV Ultra-high-strength Steel
CHEN Gang1,*, YAO Yuanchao1, JIA Yuzhen2,3, SU Bin1, LIU Guoyue2,3, ZENG Bin4
1 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2 Sawing Engineering Research Center of Hunan Province, Changsha 410200, China
3 Bichamp Cutting Technology (Hunan) Co., Ltd., Changsha 410200, China
4 Hunan Valin Lianyuan Iron and Steel Co., Ltd., Loudi 417000, Hunan, China
下载:  全 文 ( PDF ) ( 7536KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3500 热模拟机在温度为1 173~1 373 K和应变速率为0.01~10 s-1的条件下通过热压缩试验研究了30Cr4MoNiV超高强度钢的热变形行为,引入应变补偿建立了优化的本构方程。结果表明:流动应力随应变速率的增大和变形温度的降低而增大。采用幂律函数、指数函数和双曲正弦函数构建的三种本构方程中,双曲正弦函数的准确度最高。基于双曲正弦函数并引入应变补偿优化后的本构方程可以较为准确地预测30Cr4MoNiV超高强度钢在热加工过程中的流动应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
姚远超
贾寓真
苏斌
刘国跃
曾斌
关键词:  超高强度钢  热变形行为  本构方程  应变补偿    
Abstract: In this work, the hot deformation behavior of 30Cr4MoNiV ultra-high-strength (UHS) steel is investigated by isothermal compression tests using the Gleeble-3500 thermal simulation machine at 1 173—1 373 K under the strain rate of 0.01—10 s-1, and the optimized constitutive equation with strain-dependent constants suitable for 30Cr4MoNiV UHS steel is established. The results show that the flow stress increases with the increase of the strain rate and the decrease of the deformation temperature. The constitutive equation constructed by hyperbolic sine function has the highest accuracy among the three constitutive equations constructed by power law function, exponential function and hyperbolic sine function. Based on the hyperbolic sine function and the strain-dependent constants, the optimized constitutive equation can accurately predict the flow stress of 30Cr4MoNiV UHS steel in the process of hot processing.
Key words:  ultra-high-strength steel    hot deformation behavior    constitutive equation    strain-dependent constant
出版日期:  2022-11-10      发布日期:  2022-11-03
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51971091)
通讯作者:  * chengang@hnu.edu.cn   
作者简介:  陈刚,湖南大学教授、博士研究生导师。2005年6月获得湖南大学材料加工工程博士学位,先后主持或参与了国家“863”、国家科技攻关项目、国家自然科学基金项目、部省级重点项目等40余项。在国内外学术期刊上发表论文80余篇,授权国家发明专利10余项,主要研究方向包括:异种金属焊接、快速凝固与喷射沉积、粉末冶金及金属注射成形、高熵合金及其涂层等。
引用本文:    
陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
CHEN Gang, YAO Yuanchao, JIA Yuzhen, SU Bin, LIU Guoyue, ZENG Bin. Construction and Optimization of Hot Deformation Constitutive Equation of 30Cr4MoNiV Ultra-high-strength Steel. Materials Reports, 2022, 36(21): 21010158-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010158  或          http://www.mater-rep.com/CN/Y2022/V36/I21/21010158
1 Sellars C M, Mctegart W J. Acta Metallurgica, 1966, 14(9),1136.
2 Lin Y C, Chen M S, Zhong J. Computational Materials Science, 2008, 42(3),470.
3 Lei B, Chen G, Liu K, et al. Metals, 2019, 9(1), 42.
4 Rao K P, Prasad Y, Hawbolt E B. Journal of Materials Processing Technology, 1996, 56(1-4),897.
5 Jha J S , Toppo S P , Singh R , et al. Journal of Materials Processing Technology, 2019, 270,216.
6 Krbaa M, Eckert M, Krian D, et al. Metals, 2019, 9(10),1125.
7 Wang H, Liu D, Wang J G, et al. Journal of Iron and Steel Research International, 2020, 27(7),807.
8 Mirzadeh H, Cabrera J M, Prado J M, et al. Materials Science & Engineering A, 2011, 528(10-11),3876.
9 Babaniaris S, Ramajayam M, Lu J, et al. Materials Science and Enginee-ring A, 2020, 793,139873.
10 Hwang W J, Cho J R, Bae W B, et al. Journal of the Korean Society for Precision Engineering, 1999, 16(6),183.
11 Sun D, Jiang S, Yan B, et al. Journal of Alloys and Compounds, 2020, 834,155010.
12 Park N K, Yeom J T, Na Y S. Journal of Materials Processing Technology, 2002, 130, 540.
13 Liu J, Wang K, Lu S, et al. Journal of Nuclear Materials, 2020, 531,151993.
14 Pang Y, Xiao Z, Jia Y L, et al. Journal of Alloys and Compounds, 2020, 845,156161.
15 Xiao Y, Guo C, Guo X. Materials Science and Engineering: A, 2011, 528,6510.
16 Li L, Zhang X. Materials Science and Engineering: A, 2011, 528,1396.
17 Wu Y, Zhang X, Deng Y, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(12),2961(in Chinese).
吴懿萍, 张新明, 邓运来, 等. 中国有色金属学报, 2014,24(12),2961.
18 Wang Z, Qi L, Zhou J, et al. Computational Materials Science, 2011, 50,2422.
19 Yuan C H, Liu B, Liu Y X, et al. Transactions of Nonferrous Metals Society of China, 2020, 30,657.
20 Ahamed H, Senthilkumar V. Materials Science and Engineering: A, 2012, 539,349.
21 Kumar S, Raghu T, Bhattacharjee P, et al. Journal of Materials Science, 2015, 50(19),6444.
22 Wang X, Jiang J, Li G, et al. Journal of Alloys and Compounds, 2020, 815,152469.
23 Wu Y, Liu Y, Li C, et al. Intermetallics, 2019, 113,106584.
24 Dong J, Li C, Liu C, et al. Journal of Materials Research 2017, 32(19),3777.
25 Zang Q, Yu H, Lee Y S, et al. Materials Characterization, 2019, 151,404.
26 Zener C, Hollomon J H. Journal of Applied Physics, 1944, 15(1),22.
27 McQueen H J, Ryan N D. Materials Science and Engineering A, 2002, 322,43.
28 Mirzadeh H, Najafizadeh A, Moazeny M. Metallurgical and Materials Transactions A, 2009, 40,2950.
29 Liang C, Zhao G, Yu J, et al. Materials and Design, 2014, 66,129.
30 Zhai R, Wang W, Ma R, et al. Journal of Materials Engineering and Performance, 2020, 29,964.
31 Cai D, Xiong L, Liu W, et al. Materials Design, 2009, 30,921.
32 Cai J, Li F, Liu T, et al. Materials Design, 2011, 32,1144.
33 Li M, Duan Y, Yao D, et al. Metals, 2019, 10, 64.
[1] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 苏粤兰, 罗兵辉, 柏振海, 莫文锋, 何川. Al-Mg-Si-In合金的热变形行为和热轧工艺[J]. 材料导报, 2021, 35(20): 20137-20142.
[4] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[5] 何春雨, 余伟, 程知松, 王铭阳, 唐荻. 高强耐蚀车体用钢热变形行为及本构方程的研究[J]. 材料导报, 2021, 35(18): 18153-18162.
[6] 任军帅, 李欣琳, 肖松涛, 周立鹏, 舒滢, 张英明. 新型Ti-Al-Zr-Nb-Mo-Si钛合金热变形行为及基于BP神经网络模型的本构关系研究[J]. 材料导报, 2020, 34(Z1): 283-288.
[7] 仇鹏, 王家毅, 段晓鸽, 蔺宏涛, 陈康, 江海涛. AA7021铝合金热变形行为及微观组织演变机理的研究[J]. 材料导报, 2020, 34(8): 8106-8112.
[8] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[9] 吕鹏, 陈亚楠, 关庆丰, 李姚君, 许亮, 丁佐军. 新型超超临界机组用叶片钢11Cr12Ni3Mo2VN的热变形行为[J]. 材料导报, 2020, 34(4): 4113-4117.
[10] 罗锐, 陈乐利, 曹赟, 周皓天, 崔树刚, 韩敏, 裴昌磊, 程晓农, 高佩. 铬钼高温铁素体钢的形变特性与动态再结晶模型[J]. 材料导报, 2020, 34(20): 20118-20122.
[11] 王颂博, 李全安, 陈晓亚, 朱利敏, 张帅, 关海昆. Mg-11Gd-3Y-1.1Zn-0.5Zr的高温热压缩行为及热加工图[J]. 材料导报, 2020, 34(18): 18104-18108.
[12] 胡余生, 冯迪, 周建党, 朱田, 张豪, 张捷, 范曦, 宋飞刀. 喷射成形AlSi25Cu4Mg耐磨合金的本构方程及热加工图[J]. 材料导报, 2020, 34(10): 10120-10125.
[13] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[14] 佟莹, 高林, 张开开, 权国政, 王玄, 周杰. 超高强度钢板的梯度控温相变强化模式[J]. 材料导报, 2019, 33(20): 3494-3501.
[15] 夏雨, 王快社, 胡平, 胡卜亮, 李世磊, 陈文静, 周宇航, 冯鹏发. 纯钼金属高温塑性变形行为研究进展[J]. 材料导报, 2019, 33(19): 3277-3289.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed