Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23120166-7    https://doi.org/10.11896/cldb.23120166
  无机非金属及其复合材料 |
SO2和CO2共同作用下混凝土性能劣化研究
牛荻涛1,2, 杨瑞希1, 吕瑶1,*, 孙杏杏1, 曹志远1, 吴鸿渠1
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学省部共建西部绿色建筑国家重点实验室,西安 710055
Performance Deterioration of Concrete Under the Combined Action of SO2 and CO2
NIU Ditao1,2, YANG Ruixi1, LYU Yao1,*, SUN Xingxing1, CAO Zhiyuan1, WU Hongqu1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 8190KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在电力、机械、冶金和化工等行业,工业生产过程中排放大量SO2和CO2气体,导致混凝土结构耐久性问题突出,严重缩短了混凝土结构的使用寿命。本工作研究了SO2与CO2共同作用下混凝土中性化深度、相对动弹性模量以及损伤层厚度的变化规律。采用扫描电镜(SEM)、X射线衍射仪(XRD)和核磁共振仪(NMR)测试了混凝土的微观形貌、物相组成和孔隙结构,揭示了SO2与CO2共同作用下混凝土的腐蚀机理。结果表明:混凝土中性化深度和损伤层厚度均呈“三阶段”增长趋势,水胶比为0.57的混凝土在第35次循环后中性化深度和损伤层厚度分别达到20.55 mm和10.93 mm;相对动弹性模量呈先增大后下降的趋势,且随水胶比的增大而增大。SO2和CO2共同作用下,混凝土腐蚀的最终产物为石膏。相较于未腐蚀混凝土,膨胀性产物石膏的生成使得中性化混凝土孔隙率增大,水胶比为0.37、0.47、0.57的混凝土在第35次腐蚀循环后孔隙率分别增大了0.19%、0.18%、0.15%,且混凝土孔结构呈小孔向中孔、中孔向大孔发展的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛荻涛
杨瑞希
吕瑶
孙杏杏
曹志远
吴鸿渠
关键词:  混凝土  二氧化碳  二氧化硫  性能劣化  中性化深度  腐蚀机理    
Abstract: During the industrial production processes of electricity, machinery, metallurgy and chemical industries, a large amount of SO2 and CO2 gases are emitted, which lead to the problem of durability of concrete structures and seriously reduce the service life of concrete structures. In this work, the changing patterns of neutralization depth, relative dynamic elastic modulus and damage layer thickness of concrete under the combined action of SO2 and CO2 were investigated. The microscopic morphology, phase composition and pore structure of concrete, both before and after corrosion, were tested by scanning electron microscopy(SEM), X-ray diffraction(XRD) and nuclear magnetic resonance(NMR), and the corrosion mechanism of concrete under the combined action of SO2 and CO2 was revealed. The results show that both the neutralization depth and the damage layer thickness show a distinctive “three-stage” growth trend. For concrete with a water-binder ratio of 0.57, the neutralization depth and damage layer thickness reach 20.55 mm and 10.93 mm, respectively, after the 35th corrosion cycle. The relative dynamic elastic modulus increases first and then decrease, and it increases with the increase of water-binder ratios. Under the combined action of SO2 and CO2, the final product of concrete corrosion is gypsum. Compared with uncorroded concrete, the expansive gypsum formated increases the porosity of neutra-lized concrete, and the porosity of concrete with water-cement ratio of 0.37, 0.47 and 0.57 increases by 0.19%, 0.18% and 0.15% respectively after the 35th corrosion cycle, and the pore structure of concrete tends to develop from small pores to medium pores and from medium pores to large pores.
Key words:  concrete    carbon dioxide    sulfur dioxide    performance degradation    neutralization depth    corrosion mechanism
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52078413)
通讯作者:  *吕瑶,西安建筑科技大学师资博士后,目前主要从事工业建筑混凝土结构耐久性等方面的研究工作。lvyaozuibangde@163.com   
作者简介:  牛荻涛,西安建筑科技大学教授、博士研究生导师,国家杰出青年基金获得者。主要研究领域有工程结构耐久性及其对策、既有结构可靠性评定与加固、新型材料与新型结构体系等。
引用本文:    
牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
NIU Ditao, YANG Ruixi, LYU Yao, SUN Xingxing, CAO Zhiyuan, WU Hongqu. Performance Deterioration of Concrete Under the Combined Action of SO2 and CO2. Materials Reports, 2025, 39(5): 23120166-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120166  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23120166
1 Ling Z, Huang T, Zhao Y, et al. Atmospheric Chemistry and Physics, 2017, 17(14), 9115.
2 Lyu Y, Niu D T, Liu X G, et al. Journal of Building Materials, 2022, 25(6), 621(in Chinese).
吕瑶, 牛荻涛, 刘西光, 等. 建筑材料学报, 2022, 25(6), 621.
3 Šavija B, Luković M. Construction and Building Materials, 2016, 117, 285.
4 Fang Y, Chang J. Construction and Building Materials, 2015, 76, 360.
5 Papadakis V G, Vayenas C G, Fardis M N. Materials Journal, 1991, 88(4), 363.
6 Khunthongkeaw J, Tangtermsirikul S. Journal of Materials in Civil Engineering, 2005, 17(5), 570.
7 Khunthongkeaw J, Tangtermsirikul S, Leelawat T. Construction and Building Materials, 2006, 20(9), 744.
8 Saetta A V, Vitaliani R V. Cement and Concrete Research, 2004, 34(4), 571.
9 Saetta A V, Vitaliani R V. Cement and Concrete Research, 2005, 35(5), 958.
10 Song H, Niu D T, Li C H. Journal of the Chinese Ceramic Society, 2009, 37(12), 2066(in Chinese).
宋华, 牛荻涛, 李春晖. 硅酸盐学报, 2009, 37(12), 2066.
11 Cui H, Tang W, Liu W, et al. Construction & Building Materials, 2015, 93, 522.
12 Li G, Yuan Y S, Geng O. Concrete, 2004(11), 49(in Chinese).
李果, 袁迎曙, 耿欧. 混凝土, 2004(11), 49.
13 Zhang Y, Jiang L X. Industrial Construction, 1998(1), 16(in Chinese).
张誉, 蒋利学. 工业建筑, 1998(1), 16.
14 Niu D T, Dong Z P, Pu J X. Industrial Construction, 1999(9), 43(in Chinese).
牛荻涛, 董振平, 浦聿修. 工业建筑, 1999(9), 43.
15 Liu P, Yu Z, Chen Y. Cement and Concrete Composites, 2020, 114, 103736.
16 Niu J G, Wu B, Yang P F. Concrete, 2016(3), 56(in Chinese).
牛建刚, 吴斌, 杨鹏飞. 混凝土, 2016(3), 56.
17 Niu J G, Wu B, Hu W X, et al. Concrete, 2016(5), 17(in Chinese).
牛建刚, 吴斌, 胡伟勋, 等. 混凝土, 2016(5), 17.
18 Tang Z Y, Jin B S, Zhong Z P, et al. Industrial Construction, 2005(S1), 710(in Chinese).
唐志永, 金保升, 仲兆平, 等. 工业建筑, 2005(S1), 710.
19 Lv Y, Niu D T, Liu X G. Journal of Materials Research and Technology, 2022, 21, 2038.
20 Lv Y, Niu D T, Liu X G, et al. Materials and Structures, 2024, 57(1), 7.
21 Mainier B F, Almeida P C F, Nani B, et al. Open Journal of Civil Engineering, 2015, 5(4), 379.
22 Yang P F. The research on the corrosion rules of concrete in the sulfur dioxide environment. Master’s Thesis, Inner Mongolia University of Science and Technology, China, 2013 (in Chinese).
杨鹏飞. 混凝土在二氧化硫环境中的腐蚀规律研究. 硕士学位论文, 内蒙古科技大学, 2013
23 Pavlík V, Bajza A, Rouseková I, et al. Cement and Concrete Research, 2007, 37(7), 1085.
24 Huang K X, Wu X Z, Jiang R M, et al. Corrosion and protection of reinforcement in reinforced concrete structures, China Architecture & Building Press, China, 1983(in Chinese).
黄可信, 吴兴祖, 蒋仁敏, 等. 钢筋混凝土结构中钢筋腐蚀与保护, 中国建筑工业出版社, 1983.
25 General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Specifications for damp heat testing chambers: GB/T 10586-2006, China Standard Press, China, 2006(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 湿热试验箱技术条件: GB/T 10586-2006, 中国标准出版社, 2006
26 General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Corrosion-resistant testing method of the metal deposits and conversion coatings for the light industrial products-Sulphur dioxide test: QB/T 3830-1999, China Standard Press, China, 1999(in Chinese).
中华人民共和国国家质量监督检验检疫总局. 轻工产品金属镀层和化学处理层的耐腐蚀试验方法二氧化硫试验法: QB/T 3830-1999, 中国标准出版社, 1999.
27 Ministry of Housing and Urban-Rural Development of the PRC. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082-2009, China Standard Press, China, 2009(in Chinese).
中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法: GB/T 50082-2009, 中国标准出版社, 2009.
28 China Association for Engineering Construction Standardization. Technical specification for inspection of concrete defects by ultrasonic method: CECS 21-2000, China Standard Press, China, 2000(in Chinese).
中国工程建设标准化协会. 超声法检测混凝土缺陷技术规程: CECS 21-2000, 中国标准出版社, 2000.
29 Papadakis V G, Vayenas C G, Fardis M N. ACIhE, 1989, 35(10), 1639.
30 Chang H, Wang Y, Wang X, et al. Construction and Building Materials, 2022, 324, 126639.
31 Cui D. Microstructure, carbonation of cement-based materials and models predicting carbonation depths in the context of global climate change. Ph. D. Thesis, Southeastern University, China, 2019 (in Chinese).
崔冬. 水泥基材料微结构、碳化以及考虑气候变化的碳化深度预测模型研究. 东南大学, 2019.
32 Wang K, Ma B G, Long S Z. Journal of the Chinese Ceramic Society, 2009, 37(5), 880.
33 Zhou H, Li Y L, Gao F, et al. Journal of Building Materials, 2013, 16(6), 1097(in Chinese).
周华, 李英亮, 高峰, 等. 建筑材料学报, 2013, 16(6), 1097.
34 Li H B, Zhu J Y, Guo H S. Chinese Journal of Magnetic Resonance, 2008(2), 273(in Chinese).
李海波, 朱巨义, 郭和坤. 波谱学杂志, 2008(2), 273.
[1] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[4] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[5] 吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
[6] 姜骞, 于诚, 张茜, 周脉席, 刘建忠, 韩方玉. 清水混凝土的表面气孔缺陷形成与调控研究进展[J]. 材料导报, 2025, 39(4): 23110170-8.
[7] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[8] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[9] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[10] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[11] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[12] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[13] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[14] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[15] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed