Performance Deterioration of Concrete Under the Combined Action of SO2 and CO2
NIU Ditao1,2, YANG Ruixi1, LYU Yao1,*, SUN Xingxing1, CAO Zhiyuan1, WU Hongqu1
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China 2 State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an 710055, China
Abstract: During the industrial production processes of electricity, machinery, metallurgy and chemical industries, a large amount of SO2 and CO2 gases are emitted, which lead to the problem of durability of concrete structures and seriously reduce the service life of concrete structures. In this work, the changing patterns of neutralization depth, relative dynamic elastic modulus and damage layer thickness of concrete under the combined action of SO2 and CO2 were investigated. The microscopic morphology, phase composition and pore structure of concrete, both before and after corrosion, were tested by scanning electron microscopy(SEM), X-ray diffraction(XRD) and nuclear magnetic resonance(NMR), and the corrosion mechanism of concrete under the combined action of SO2 and CO2 was revealed. The results show that both the neutralization depth and the damage layer thickness show a distinctive “three-stage” growth trend. For concrete with a water-binder ratio of 0.57, the neutralization depth and damage layer thickness reach 20.55 mm and 10.93 mm, respectively, after the 35th corrosion cycle. The relative dynamic elastic modulus increases first and then decrease, and it increases with the increase of water-binder ratios. Under the combined action of SO2 and CO2, the final product of concrete corrosion is gypsum. Compared with uncorroded concrete, the expansive gypsum formated increases the porosity of neutra-lized concrete, and the porosity of concrete with water-cement ratio of 0.37, 0.47 and 0.57 increases by 0.19%, 0.18% and 0.15% respectively after the 35th corrosion cycle, and the pore structure of concrete tends to develop from small pores to medium pores and from medium pores to large pores.
牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
NIU Ditao, YANG Ruixi, LYU Yao, SUN Xingxing, CAO Zhiyuan, WU Hongqu. Performance Deterioration of Concrete Under the Combined Action of SO2 and CO2. Materials Reports, 2025, 39(5): 23120166-7.
1 Ling Z, Huang T, Zhao Y, et al. Atmospheric Chemistry and Physics, 2017, 17(14), 9115. 2 Lyu Y, Niu D T, Liu X G, et al. Journal of Building Materials, 2022, 25(6), 621(in Chinese). 吕瑶, 牛荻涛, 刘西光, 等. 建筑材料学报, 2022, 25(6), 621. 3 avija B, Luković M. Construction and Building Materials, 2016, 117, 285. 4 Fang Y, Chang J. Construction and Building Materials, 2015, 76, 360. 5 Papadakis V G, Vayenas C G, Fardis M N. Materials Journal, 1991, 88(4), 363. 6 Khunthongkeaw J, Tangtermsirikul S. Journal of Materials in Civil Engineering, 2005, 17(5), 570. 7 Khunthongkeaw J, Tangtermsirikul S, Leelawat T. Construction and Building Materials, 2006, 20(9), 744. 8 Saetta A V, Vitaliani R V. Cement and Concrete Research, 2004, 34(4), 571. 9 Saetta A V, Vitaliani R V. Cement and Concrete Research, 2005, 35(5), 958. 10 Song H, Niu D T, Li C H. Journal of the Chinese Ceramic Society, 2009, 37(12), 2066(in Chinese). 宋华, 牛荻涛, 李春晖. 硅酸盐学报, 2009, 37(12), 2066. 11 Cui H, Tang W, Liu W, et al. Construction & Building Materials, 2015, 93, 522. 12 Li G, Yuan Y S, Geng O. Concrete, 2004(11), 49(in Chinese). 李果, 袁迎曙, 耿欧. 混凝土, 2004(11), 49. 13 Zhang Y, Jiang L X. Industrial Construction, 1998(1), 16(in Chinese). 张誉, 蒋利学. 工业建筑, 1998(1), 16. 14 Niu D T, Dong Z P, Pu J X. Industrial Construction, 1999(9), 43(in Chinese). 牛荻涛, 董振平, 浦聿修. 工业建筑, 1999(9), 43. 15 Liu P, Yu Z, Chen Y. Cement and Concrete Composites, 2020, 114, 103736. 16 Niu J G, Wu B, Yang P F. Concrete, 2016(3), 56(in Chinese). 牛建刚, 吴斌, 杨鹏飞. 混凝土, 2016(3), 56. 17 Niu J G, Wu B, Hu W X, et al. Concrete, 2016(5), 17(in Chinese). 牛建刚, 吴斌, 胡伟勋, 等. 混凝土, 2016(5), 17. 18 Tang Z Y, Jin B S, Zhong Z P, et al. Industrial Construction, 2005(S1), 710(in Chinese). 唐志永, 金保升, 仲兆平, 等. 工业建筑, 2005(S1), 710. 19 Lv Y, Niu D T, Liu X G. Journal of Materials Research and Technology, 2022, 21, 2038. 20 Lv Y, Niu D T, Liu X G, et al. Materials and Structures, 2024, 57(1), 7. 21 Mainier B F, Almeida P C F, Nani B, et al. Open Journal of Civil Engineering, 2015, 5(4), 379. 22 Yang P F. The research on the corrosion rules of concrete in the sulfur dioxide environment. Master’s Thesis, Inner Mongolia University of Science and Technology, China, 2013 (in Chinese). 杨鹏飞. 混凝土在二氧化硫环境中的腐蚀规律研究. 硕士学位论文, 内蒙古科技大学, 2013 23 Pavlík V, Bajza A, Rouseková I, et al. Cement and Concrete Research, 2007, 37(7), 1085. 24 Huang K X, Wu X Z, Jiang R M, et al. Corrosion and protection of reinforcement in reinforced concrete structures, China Architecture & Building Press, China, 1983(in Chinese). 黄可信, 吴兴祖, 蒋仁敏, 等. 钢筋混凝土结构中钢筋腐蚀与保护, 中国建筑工业出版社, 1983. 25 General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Specifications for damp heat testing chambers: GB/T 10586-2006, China Standard Press, China, 2006(in Chinese). 中华人民共和国国家质量监督检验检疫总局. 湿热试验箱技术条件: GB/T 10586-2006, 中国标准出版社, 2006 26 General Administration of Quality Supervision, Inspection and Quarantine of the PRC. Corrosion-resistant testing method of the metal deposits and conversion coatings for the light industrial products-Sulphur dioxide test: QB/T 3830-1999, China Standard Press, China, 1999(in Chinese). 中华人民共和国国家质量监督检验检疫总局. 轻工产品金属镀层和化学处理层的耐腐蚀试验方法二氧化硫试验法: QB/T 3830-1999, 中国标准出版社, 1999. 27 Ministry of Housing and Urban-Rural Development of the PRC. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082-2009, China Standard Press, China, 2009(in Chinese). 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法: GB/T 50082-2009, 中国标准出版社, 2009. 28 China Association for Engineering Construction Standardization. Technical specification for inspection of concrete defects by ultrasonic method: CECS 21-2000, China Standard Press, China, 2000(in Chinese). 中国工程建设标准化协会. 超声法检测混凝土缺陷技术规程: CECS 21-2000, 中国标准出版社, 2000. 29 Papadakis V G, Vayenas C G, Fardis M N. ACIhE, 1989, 35(10), 1639. 30 Chang H, Wang Y, Wang X, et al. Construction and Building Materials, 2022, 324, 126639. 31 Cui D. Microstructure, carbonation of cement-based materials and models predicting carbonation depths in the context of global climate change. Ph. D. Thesis, Southeastern University, China, 2019 (in Chinese). 崔冬. 水泥基材料微结构、碳化以及考虑气候变化的碳化深度预测模型研究. 东南大学, 2019. 32 Wang K, Ma B G, Long S Z. Journal of the Chinese Ceramic Society, 2009, 37(5), 880. 33 Zhou H, Li Y L, Gao F, et al. Journal of Building Materials, 2013, 16(6), 1097(in Chinese). 周华, 李英亮, 高峰, 等. 建筑材料学报, 2013, 16(6), 1097. 34 Li H B, Zhu J Y, Guo H S. Chinese Journal of Magnetic Resonance, 2008(2), 273(in Chinese). 李海波, 朱巨义, 郭和坤. 波谱学杂志, 2008(2), 273.