Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23120175-6    https://doi.org/10.11896/cldb.23120175
  无机非金属及其复合材料 |
空间核动力燃料发展趋势与研究进展
吴学志*, 魏国良, 郭骁, 屈哲昊, 王轩, 任劲如
中国原子能科学研究院反应堆工程技术研究所,北京 102413
Development Trends and Research Progress of Space Nuclear Power Fuel
WU Xuezhi*, WEI Guoliang, GUO Xiao, QU Zhehao, WANG Xuan, REN Jinru
Reactor Engineering Technology Research Institute, China Institute of Atomic Energy, Beijing 102413, China
下载:  全 文 ( PDF ) ( 7601KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间核动力是未来实现深空探测和载物运输的关键技术之一,空间核动力具有工作寿命长、机动性能好和受太空环境影响小的特点,是空间环境中可提供能量的优质能源。核燃料是空间核动力反应堆的核心部件,处于长时、高温和强辐射的服役环境,是影响空间核反应堆能否高效稳定运行的关键材料,与传统压水堆UO2燃料存在较大不同。本文综述了以空间核电源与核推进为代表的空间核动力反应堆燃料的发展趋势与研究进展,对比分析了不同空间核动力系统燃料体系的区别,从燃料设计、工艺制备、性能分析与服役评价等方面系统阐述了影响空间核动力燃料应用的关键问题,提出了未来我国空间核动力燃料的技术方向与研究重点,为我国先进空间核动力反应堆燃料的优化设计与性能提升提供支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴学志
魏国良
郭骁
屈哲昊
王轩
任劲如
关键词:  空间核动力  反应堆  燃料  核电源  核推进    
Abstract: Space nuclear power is one of the key technologies for achieving deep space exploration and carrier transportation in the future. Space nuclear power has the characteristics of long service life, good maneuverability, and minimal impact from the space environment. It is a high-quality energy source that provides energy in space. Nuclear fuel is the core component of space nuclear power reactors, located in long-term, high-temperature, and high radiation service environments. It is a key material that affects the efficient and stable operation of space nuclear reactors, which is significantly different from traditional pressurized water reactor UO2 fuel. This paper reviews the development trends and research progress of space nuclear power reactor fuels, represents by nuclear power sources and nuclear propulsion. It compares and analyzes the diffe-rences in fuel systems used in different space nuclear power systems, and systematically elaborates on the key issues affecting the application of space nuclear power fuels from the aspects of fuel design, process preparation, performance analysis, and service evaluation. It also proposed the technical direction and research focus of future space nuclear power fuels in China. Providing support for the optimization design and perfor-mance improvement of fuel for advanced space nuclear power reactors in China.
Key words:  space nuclear power    reactor    fuel    nuclear-electric power    nuclear propulsion
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TL352.21  
通讯作者:  *吴学志,博士,中国原子能科学研究院研究员。主是从事压水堆、空间核动力以及快堆用先进核燃料与材料的基础理论和应用研究。25871605@qq.com   
引用本文:    
吴学志, 魏国良, 郭骁, 屈哲昊, 王轩, 任劲如. 空间核动力燃料发展趋势与研究进展[J]. 材料导报, 2025, 39(5): 23120175-6.
WU Xuezhi, WEI Guoliang, GUO Xiao, QU Zhehao, WANG Xuan, REN Jinru. Development Trends and Research Progress of Space Nuclear Power Fuel. Materials Reports, 2025, 39(5): 23120175-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120175  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23120175
1 Ponomarev S N, Kukharkin N E. Nuclear News, 2000, 76, 37.
2 Bennett G L, Hemler R J. Journal of Propulsion and Power, 1996, 12, 901.
3 El-Genk M S, Tournier J M. Journal of Nuclear Materials, 2005, 340, 93
4 El-Genk M S. Energy Conversion and Management, 2008, 49, 402.
5 Morley N J, El-Genk M S. Nuclear Engineering and Design, 1994, 149, 387.
6 Koroteev A S. Atomic Energy, 2010, 108, 170.
7 Bennett G L, Hemler R J, Schock A. Actaastronautica, 1996, 38, 551.
8 Demuth S F. Progress in Nuclear Energy, 2003, 42, 323.
9 Gabaraev B A, Lopatkin A V. Atomic Energy, 2007, 103, 566.
10 Zakirov V, Pavshook V. Nuclear Engineering and Design, 2011, 241, 1529.
11 Mason L, Palac D, Gibson M. Journal of the British Interplanetary Society, 2011, 64, 99.
12 Johnson R A, Morgan W T, Rocklin S R. Nuclear Engineering and Design, 1967, 5, 7.
13 Voss S S. Nuclear Technology, 2020, 206, 1.
14 Zakirov V, Pavshook V. Nuclear Engineering and Design, 2010, 241, 1529.
15 Šahin S, Kennel E B. Nuclear Technology, 1994, 107, 155.
16 Wu X Z, Yin B Y. Materials Reports, 2022, 36(Z1), 14(in Chinese).
吴学志, 尹邦跃. 材料导报, 2022, 36(Z1), 14.
17 Yin B Y, Wu X Z. Atomic Energy Science and T echnology, 2011, 45(2), 206(in Chinese).
尹邦跃, 吴学志. 原子能科学技术, 2011, 45(2), 206.
18 Chinthaka G W, Yeamans C B. Inorganic Chemistry, 2009, 48, 10635.
19 Crisp J A, Adler M, Matijevic J R. Journal of Geophysical Research:Planets, 2003, 108, 8061.
20 Haertling C, Hanrahan R J. Journal of Nuclear Materials, 2007, 366, 317.
21 Hickman R, Broadway J. In:48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Atlanta, Georgia, 2012.
22 Butt D P, Wallace T C. Journal of the American Ceramic Society, 1993, 76, 1409.
23 Fang Y L, Liu L, Sun H L. Astronautical Systems Engineering Technology, 2020, 4(1), 63(in Chinese).
房玉良, 刘林, 孙海亮. 宇航总体技术, 2020, 4(1), 63.
24 Wu X Z, Wei G G, Guo X. Atomic Energy Science and Technology, 2024, 58(1), 166(in Chinese).
吴学志, 魏国良, 郭骁. 原子能科学技术, 2024, 58(1), 166.
[1] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[2] 于锐, 顾龙, 姚存峰, 张璐, 王冠, 郭亮, 吴金德, 姜韦, 李金阳. 加速器驱动次临界系统用嬗变核燃料研究进展分析[J]. 材料导报, 2024, 38(7): 22110316-11.
[3] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[4] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[5] 阎格, 张慧娟, 蔡利海, 邵伟光, 刘文言. 燃料油与紫外光共同作用下热塑性聚氨酯结构与性能演变规律[J]. 材料导报, 2024, 38(6): 22050216-6.
[6] 付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
[7] 钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
[8] 谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
[9] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[10] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[11] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[12] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[13] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[14] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[15] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed