Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 23120113-7    https://doi.org/10.11896/cldb.23120113
  无机非金属及其复合材料 |
混杂纤维对硫铝酸盐水泥基ECC材料性能的影响
周书澎1, 刘泽平1, 区庆佑1, 王传林1,2,*
1 汕头大学土木与智慧建设工程系,广东 汕头 515063
2 广东省结构安全与监测工程技术研究中心,广东 汕头 515063
Effect of Hybrid Fiber on the Properties of Sulphoaluminate Cement-based ECC Materials
ZHOU Shupeng1, LIU Zeping1, OU Qingyou1, WANG Chuanlin1,2,*
1 Department of Civil and Intelligent Construction Engineering, Shantou University, Shantou 515063, Guangdong, China
2 Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou 515063, Guangdong, China
下载:  全 文 ( PDF ) ( 15814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了聚乙烯醇(PVA)纤维、聚酯纤维(PET纤维)的“纤维混杂效应”对硫铝酸盐水泥基ECC材料(SAC-ECC)力学性能影响,引入纤维增强系数和混杂效应系数以评价两种纤维混杂效应。结果表明,在相同体积掺量下,PVA-ECC流动度和表观孔隙率均高于PET-ECC,混掺PVA和PET纤维条件下其表观孔隙率和流动度介于两者单掺时的数值之间。随着PVA和PET纤维掺量增加,SAC-ECC抗折和抗压强度呈先降后升趋势,且在相同掺量下掺加PET纤维的水泥砂浆强度更高。混掺PVA纤维和PET纤维会发挥正混杂效应,可进一步提高砂浆的抗拉、抗压强度,且PVA∶PET混合比例为1∶2时对SAC-ECC强度提升效果最佳。混杂纤维提高ECC与玄武岩纤维复合材料(BFRP)筋粘结强度效果较好,而单掺0.3%PET纤维对新旧水泥基材料粘结性能提升效果较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周书澎
刘泽平
区庆佑
王传林
关键词:  聚乙烯醇纤维  聚酯纤维  硫铝酸盐水泥基ECC材料(SAC-ECC)  力学性能  混杂效应    
Abstract: The fiber mixing effect of polyvinyl alcohol fiber and polyester fiber on the mechanical properties of sulphoaluminate cement-based ECC (SAC-ECC) was studied based on the benchmark mix ratio, and the fiber reinforcement coefficient and the mixing effect coefficient were also used to evaluate the mixing effect of these two fibers. The results show that the fluidity and apparent porosity of PVA-ECC are higher than those of PET-ECC with the same volume content of fiber addition, but the apparent porosity and fluidity of ECC with mixed additive of PVA and PET fibers are between the values of the ECC with additive of PVA or PET alone. With the increase of addition content of PVA and PET fiber, the flexural and compressive strength of SAC-ECC decreased first and then increased, and the strength of specimen with PET fiber was higher than that with PVA under the same addition content. The positive mixing effect of PVA fiber and PET fiber can further improve the tensile and compressive strength, and with the PVA∶PET mixing ratio of 1∶2, the strength of SAC-ECC is highest. The mixed fibers had a good effect on improving the bonding strength of ECC and basalt fiber reinforced polymer (BFRP) bars, while the single doped 0.3%PET fibers had a better effect on improving the bonding performance of new and old cement-based materials.
Key words:  polyvinyl alcohol fiber    polyester fiber    sulphoaluminate cement-based ECC materials (SAC-ECC)    mechanical property    confounding effect
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU528  
基金资助: 广东省自然科学基金(2023A1515012727);广东省普通高校青年创新人才资助项目(2021KQNCX021)
通讯作者:  *王传林,博士,汕头大学土木与智慧建设工程学院讲师、硕士研究生导师。主要从事结构加固、超高性能混凝土的研发与应用及海水海砂混凝土研究。clwang@stu.edu.cn   
作者简介:  周书澎,汕头大学土木与智慧建设工程学院硕士研究生,在王传林老师的指导下进行研究。目前主要研究领域为超高性能混凝土。
引用本文:    
周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
ZHOU Shupeng, LIU Zeping, OU Qingyou, WANG Chuanlin. Effect of Hybrid Fiber on the Properties of Sulphoaluminate Cement-based ECC Materials. Materials Reports, 2025, 39(5): 23120113-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120113  或          https://www.mater-rep.com/CN/Y2025/V39/I5/23120113
1 Lu F. Building Construction, 2022, 44(6), 1426(in Chinese).
陆峰. 建筑施工, 2022, 44(6), 1426.
2 Zhao J, Gai G C, Gao D Y. Journal of Building Materials, 2011, 14(3), 357(in Chinese).
赵军, 蔡高创, 高丹盈. 建筑材料学报, 2011, 14(3), 357.
3 Li V C, Leung C K Y. Journal of Engineering Mechanics, 1992, 188(11), 2246.
4 Zhang L F, Yin L, Yue Y. Bulletin of the Chinese Ceramic Society, 2016, 35(9), 2724(in Chinese).
张兰芳, 尹玉龙, 岳瑜. 硅酸盐通报, 2016, 35(9), 2724.
5 Zhu J P, Sun M. Water Resources and Power, 2017, 35 (6), 100 (in Chinese).
朱佳鹏, 孙敏. 水电能源科学, 2017, 35(6), 100.
6 Chen S , Wu A R. Cement Works, 2021(5), 22 (in Chinese).
陈杉, 吴安冉. 水泥工程, 2021(5), 22.
7 ASTM C20-2000(2015). Standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractor brick and shapes by boiling water, ASTM International, 2015.
8 Paris P C, Erdogan F. Journal of Basic Engineering, 1963, 85, 528.
9 ASTM D7913/D7913M-14. Standard test method for bond strength of fiber-reinforced polymer matrix composite bars to concrete by pullout testing, ASTM International, 2020.
10 He J J, Shi J P, Wang X Z, et al. Fiber Reinforced Plastics/ Composites, 2016(9), 26(in Chinese).
贺晶晶, 师俊平, 王学志, 等. 玻璃钢/复合材料, 2016(9), 26.
11 He X Y, Qin L D, Hao Y H, et al. Journal of Civil Engineering and Management, 2016, 33(4), 24(in Chinese).
何晓雁, 秦立达, 郝贠洪, 等. 土木工程与管理学报, 2016, 33(4), 24.
12 Cao M L, Xu L, Li Z W. Journal of Building Materials, 2017, 20(1), 112(in Chinese).
曹明莉, 许玲, 李志文. 建筑材料学报, 2017, 20(1), 112.
13 Zhao X Y. Study on bond capability of young and old concrete with mechanical joint. Master’s Thesis, Heibei University of Technology, 2004(in Chinese).
赵晓艳. 新老混凝土机械连接结合性能研究. 硕士学位论文, 河北工业大学, 2004.
14 Yang M W. Research on factors affecting bonding behavior between existing concrete and ECC. Master’s Thesis, Southeast University, 2018(in Chinese).
王孟伟. ECC与既有混凝土粘结性能的影响因素研究. 硕士学位论文, 东南大学, 2018.
15 Wei P, Zhou M. Journal of Zhong Yuang University of Technology, 2019, 30(4), 49(in Chinese).
魏鹏, 周明洋. 中原工学院学报, 2019, 30(4), 49.
16 Ming M, Zheng S S, Zheng H, et al. Engieering Mechanics, 2020, 37(8), 148(in Chinese).
明铭, 郑山锁, 郑淏, 等. 工程力学, 2020, 37(8), 148.
17 Fujii N, Noguchi T, Nakano K. Construction and Building Materials, 2011, 25, 1478.
18 Miao Q Y. Jiangxi Building Materials, 2023(4), 5(in Chinese).
缪钱燕. 江西建材, 2023(4), 5.
19 Zheng S S, Pei P, Zhang Y X, et al. Materials Reports, 2018, 32(23), 4182(in Chinese).
郑山锁, 裴培, 张艺欣 等. 材料导报, 2018, 32(23), 4182.
20 Gao S L, Xu S L. Journal of Dalian University of Technology, 2007(2), 233(in Chinese).
高淑玲, 徐世烺. 大连理工大学学报, 2007(2), 233.
21 Ding C. Modified micromechanical model and regulation mechanism of hing ductility cementitious composite. Ph. D. Thesis, Southeast University,China, 2021(in Chinese).
丁聪. 高延性水泥基复合材料的细观力学修正模型及其调控机制. 博士学位论文, 东南大学, 2021.
22 Wang C L, Liu Z P, Zhang T T, et al. Materials Reports, 2022, 36(10), 74(in Chinese).
王传林, 刘泽平, 张腾腾, 等. 材料导报, 2022, 36(10), 74.
[1] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[2] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[3] 邹家伟, 刘志超, 王发洲. 基于γ-C2S的蜂窝陶瓷常温制备与性能研究[J]. 材料导报, 2025, 39(4): 24010136-7.
[4] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[5] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[6] 丁来龙, 马明亮, 冯超, 黄微波, 王一凡, 林佳宇, 吴超. 聚脲材料的优化及抗爆抗侵彻性能研究进展[J]. 材料导报, 2025, 39(4): 24010082-9.
[7] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[8] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[9] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[10] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[11] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[12] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[13] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[14] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[15] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed