Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110275-7    https://doi.org/10.11896/cldb.23110275
  高分子与聚合物基复合材料 |
鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用
路正楠1,2, 张鹏1,2, 盛扬1,2, 孙一新1,2, MarkBradley2,3, 张嵘1,2,*
1 常州大学材料科学与工程学院, 江苏 常州 213164
2 常州大学先进功能材料江苏省国际合作联合实验室, 江苏 常州 213164
3 伦敦玛丽女王大学, 大学精准医疗研究院, 英国 伦敦 E1 1HH
Application of Luminol Self-luminescence in Polyurethane Photosensitizer-mediated Photodynamic Therapy
LU Zhengnan1,2, ZHANG Peng1,2, SHENG Yang1,2, SUN Yixin1,2, Mark Bradley2,3, ZHANG Rong1,2,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Advanced Functional Materials of Jiangsu Joint Laboratory for International Cooperation, Changzhou University, Changzhou 213164, China
3 Precision Healthcare University Research Institute, Queen Mary University of London, London E1 1HH, UK
下载:  全 文 ( PDF ) ( 19520KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光动力治疗是目前治疗癌症及耐药菌感染的很有前景的方法,该治疗通常需要采用外界光源激发,因此阻碍了其在深部肿瘤治疗中的推广应用。为克服该局限性,尝试使用自发光化合物来代替外界光源,达到原位发光激发光动力治疗的目的。本研究使用鲁米诺、辣根过氧化物酶和过氧化氢为自发光光源体系,合成了基于原卟啉的可溶性聚氨酯作为光敏剂,自发光激发聚氨酯光敏剂产生单线态氧,从而达到光动力治疗的目的。结果表明,在鲁米诺化学发光的光源激发下,聚氨酯光敏剂能通过光动力反应产生单线态氧,有效杀灭细菌以及灭活皮肤癌细胞,并通过扫描电镜和荧光染色分析验证了细菌和细胞的光动力灭活效果。因此,本工作证实了鲁米诺的化学发光能通过共振能量转移诱发聚氨酯光敏剂生成单线态氧,从而达到光动力治疗的目的,为光敏剂在临床医疗方面的进一步应用研究提供实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
路正楠
张鹏
盛扬
孙一新
MarkBradley
张嵘
关键词:  鲁米诺  化学发光  聚氨酯光敏剂  原卟啉Ⅸ  光动力治疗    
Abstract: hotodynamic therapy is currently a promising method for the treatment of cancer and drug-resistant bacterial infections, which usually requires the use of external light sources, which hinders its application in the treatment of deep seated tumors. To overcome this limitation, an attempt was made to use self-luminescent compounds instead of external light sources for the purpose of photodynamic therapy excited by in situ luminescence. In this study, luminol, horseradish peroxidase and hydrogen peroxide were mixed as a self-luminous light source system, and water-soluble polyurethane based on protoporphyrin IX was synthesized as a photosensitizer, which produced singlet oxygen by self-luminescence excitation to achieve the goal of photodynamic therapy. The results showed that the polyurethane photosensitizer could produce singlet oxygen through photodynamic reaction under the excitation of luminol chemiluminescence light source, which effectively killed bacteria and inactivated skin cancer cells, and the photodynamic inactivation effect of bacteria and cells was verified by scanning electron microscopy and fluorescence staining. Therefore, this work confirms that the chemiluminescence of luminol induces the polyurethane photosensitizer to generate singlet oxygen through resonance energy transfer, so as to achieve the purpose of photodynamic therapy, and provides an experimental basis for the further research on the application of photosensitizers in clinical medicine.
Key words:  luminol    chemiluminescence    polyurethane photosensitizer    protoporphyrin Ⅸ    photodynamic therapy
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ422  
基金资助: 江苏省六大人才高峰创新团队(SWYY-CXTD-001);常州市科技局国际合作项目(CZ20190019)
通讯作者:  *张嵘,常州大学材料科学与工程学院教授、江苏省特聘教授。目前主要从事聚合物微点阵列芯片的制备与应用,(干)细胞的分离、提纯与体外培养相关聚合物的开发,可生物降解聚合物材料的开发,抗/灭菌聚合物材料的研发,生物医用高分子材料的研发。rzhang@cczu.edu.cn   
作者简介:  路正楠,常州大学材料科学与工程学院硕士研究生,在张嵘教授的指导下进行研究。目前主要研究领域为聚氨酯光敏剂及自发光纳米微球的制备及自发光光动力对皮肤癌细胞的治疗效果。
引用本文:    
路正楠, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 鲁米诺自发光在聚氨酯光敏剂介导光动力治疗中的应用[J]. 材料导报, 2025, 39(1): 23110275-7.
LU Zhengnan, ZHANG Peng, SHENG Yang, SUN Yixin, Mark Bradley, ZHANG Rong. Application of Luminol Self-luminescence in Polyurethane Photosensitizer-mediated Photodynamic Therapy. Materials Reports, 2025, 39(1): 23110275-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110275  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110275
1 Wan B, Deng W T. Guangdong Chemical Industry, 2019, 46(7), 124(in Chinese).
万勃, 邓文婷. 广东化工, 2019, 46(7), 124.
2 Kirtane A R, Verma M, Karandikar P, et al. Nature Nanotechnology, 2021, 16(4), 369.
3 Karaman D Ş, Ercan U K, Bakay E, et al. Advanced Functional Materials, 2020, 30(15), 1908783.
4 Li X S, Kolemen S, Yoon J, et al. Advanced Functional Materials, 2016, 27(5), 1604053.
5 Tacconelli E, Carrara E, Savoldi A, et al. The Lancet Infectious Diseases, 2018, 18(3), 318.
6 Allison R R, Mota H C, Sibata C H. Photodiagnosis and Photodynamic Therapy, 2004, 1(4), 263.
7 Rose A L, Waite T D. Analytical Chemistry, 2001, 73, 5909.
8 Yang K, Wang C L, Wei X H, et al. Bioconjugate Chemistry, 2020, 31(3), 595.
9 Yin S Y, Liu W, Zhang K, et al. ACS Applied Bio Materials, 2021, 4(4), 3490.
10 Nakayama T, Nozawa N, Photodiagnosis and Photodynamic Therapy, 2020, 31, 101893.
11 Liu X, Zhang Y, Zhang P, et al. Colloids and Surfaces B:Biointerfaces, 2023, 225, 113268.
12 Seo J, Jang J, Warnke S, et al. Journal of the American Chemical Society, 2016, 138(50), 16315.
13 Mandl G A, Vettier F, Tessitore G, et al. ACS Applied Bio Materials, 2023, 6(6), 2370.
14 Fan G L, Yuan P, Deng F A, et al. ACS Applied Bio Materials, 2020, 3(9), 6124.
15 Ning L G, Liu P, Wang B, et al. Journal of Colloid and Interface Science, 2019, 549, 72.
16 Basoglu H, Degirmencioglu I, Eyupoglu F C. Photodiagnosis and Photodynamic Therapy, 2021, 36, 102615.
17 Shi J H, Lu Z N, Pan Y, et al. Journal of Applied Polymer Science, 2022, 140(7), 12273.
18 Xu S L, Cui H. Luminescence, 2006, 22(2), 77.
19 Prieto V G, Zhang P S, Sadick N S. Journal of Cosmetic and Laser Therapy, 2005, 7(2), 63.
20 Huang L, Chen T C, Lin F H. Current Medicinal Chemistry, 2013, 20, 1195.
21 Leng S, Xie K, Xie D H. Chemistry of Life, 2019, 39(5), 1004.
[1] 甘晓明, 苏玉仙, 应文伟, 王建峰, 刘力, 周晓峰, 温世鹏. 稀土上转换发光材料的设计及在光动力治疗中的应用研究进展[J]. 材料导报, 2024, 38(8): 22080243-12.
[2] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed