Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23110271-6    https://doi.org/10.11896/cldb.23110271
  金属与金属基复合材料 |
功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响
吴蒙华1, 姜炳春1, 肖雨晴2, 贾卫平2,*
1 广东科技学院机电工程学院, 广东 东莞 523083
2 大连大学机械工程学院, 辽宁 大连 116622
Effect of Power Ultrasound on Forming Process of Three-dimensional Nickel Microstructure in Mask-less Localized Electrodeposition
WU Menghua1, JIANG Bingchun1, XIAO Yuqing2, JIA Weiping2,*
1 School of Mechanical and Electrical Engineering, Guangdong University of Science and Technology, Dongguan 523083, Guangdong, China
2 School of Mechanical Engineering, Dalian University, Dalian 116622, Liaoning, China
下载:  全 文 ( PDF ) ( 12620KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 提高高深宽比三维金属微结构成型精度一直是微电子信息制造、MEMS等领域的研究重点。以制备直径为60 μm、长径比为8∶1的微镍柱为例,在无掩膜定域性电沉积(MLED)微镍柱过程中,施加一定强度、与电场作用方向相同的功率超声波,探讨超声波对无掩膜定域性电沉积三维镍质微结构成型过程的影响。主要开展了无功率超声作用及有功率超声作用下MLED制备微镍柱过程中平均体积沉积速率、表面形貌及晶粒尺寸的对比研究。结果表明:相较于无功率超声作用,有功率超声作用下MLED的平均体积沉积速率可提高28%~39%,最高平均体积沉积速率可达15 340.46 μm3/s;功率超声作用可进一步细化沉积体的晶粒尺寸,平均晶粒尺寸可达46.37 nm;同时,功率超声作用可在一定程度上改善MLED微镍柱的微观表面形貌。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴蒙华
姜炳春
肖雨晴
贾卫平
关键词:  功率超声  无掩膜定域性电沉积(MLED)  三维镍质微结构  成型过程    
Abstract: Improving the forming accuracy of three-dimensional metal microstructures with high aspect ratio has always been a research focus in microelectronic information manufacturing, MEMS and other fields. In the deposition process of mask-less localized electrodeposition (MLED) of micro-nickel pillars with diameter of 60 μm and aspect ratio of 8∶1, power ultrasound of certain strength, in the same direction to the electric field, was applied for exploring the influence of magnetic field on forming process of three-dimensional nickel microstructure in MLED. A comparative study of the average volumetric deposition rate, surface morphology and grain size during MLED of micro-nickel pillars without and under action of power ultrasound was carried out. The results show that the power ultrasound may increase the average volumetric deposition rate of MLED to 28%—39% compared to without power ultrasonic action, and the the highest average volumetric deposition rate was 15 340.46 μm3/s;at the same time, the effect of power ultrasound may further refine the grain size of sedimentary bodies, and the average grain size may reach 46.37 nm. Furthermore, the power ultrasound may improve the cylindricity and the microscopic surface morphology of micro-nickel pillars to a certain extent during MLED.
Key words:  power ultrasound    mask-less localized electrodeposition(MLED)    three-dimensional nickel microstructure    forming process
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ153.1  
基金资助: 国家自然科学基金(51875071);广东省普通高校科研重点项目(2023ZDZX3048)
通讯作者:  *贾卫平,大连大学机械工程学院教授,主要从事电化学沉积及材料表面改性和微电铸方面的研究。770818158@qq.com   
作者简介:  吴蒙华,博士,广东科技学院机电工程学院教授,主要从事电化学增材制造技术等方面的研究。
引用本文:    
吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
WU Menghua, JIANG Bingchun, XIAO Yuqing, JIA Weiping. Effect of Power Ultrasound on Forming Process of Three-dimensional Nickel Microstructure in Mask-less Localized Electrodeposition. Materials Reports, 2025, 39(1): 23110271-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23110271  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23110271
1 Muhammad H A, Krishna K S, Rex S, et al. International Journal of Electrical Machining, 2022, 27, 16.
2 Xu J K, Ren W F, Lian Z X, et al. International Journal of Advanced Manufacturing Technology, 2020, 110, 1731.
3 Murali M S, Abishek B K, Varun S K. Journal of Manufacturing Science and Engineering, 2015, 137, 021006-1.
4 Wang W, Ming P M, Zhang X M, et al. Additive Manufacturing, 2022, 50, 102582-1.
5 Liu K, Niu Q B, Wang F L. Materials Science and Engineering B, 2023, 289, 116236-1.
6 Julian H, Barnik M, Cathelijn V N, et al. Nano Letters, 2021, 21, 9093.
7 Sundaram M, Brant A, Rajurkar K. CIRP Annals-Manufacturing Technology, 2022, 71, 153.
8 Bi X L, Meng L C. Micromachines, 2022, 13, 704-1.
9 Xiao Y Q, Wu M H, Jia W P. Procedia CIRP, 2022, 113, 552.
10 Wu J H, Wu M H, Zuo S S, et al. Materials Reports, 2020, 34(Z1), 427 (in Chinese).
吴建辉, 吴蒙华, 佐珊珊, 等.材料导报, 2020, 34(Z1), 427.
11 Li X C, Ming P M, Ao S S, et al. International Journal of Machine Tools and Manufacture, 2022, 173, 103848-1.
12 Jia W P, Wu M H, Jia Z Y, et al. Materials Reports, 2020, 34(1), 02017 (in Chinese).
贾卫平, 吴蒙华, 贾振元, 等.材料导报, 2020, 34(1), 02017.
13 Aliofkhazraei M, Frank C W, Giovanni Z, et al. Applied Surface Science Advances, 2021, 6, 100141-1.
14 Yuan B X, Ma C Y, Zhang S D. Materials Protection, 2022, 55(5), 92 (in Chinese).
苑博旭, 马春阳, 张思栋. 材料保护, 2022, 55(5), 92.
15 Ignacio T, Yi Z, Madan P, et al. Surface and Coatings Technology, 2015, 276, 89.
16 Josiel M C, Ambrósio-Florêncio A N. Ultrasonics Sonochemistry, 2020, 68, 105193-1.
17 Li N. Plating and Finishing, 2023, 45(7), 8 (in Chinese).
李宁. 电镀与精饰, 2023, 45(7), 8.
18 Guo J, Yao X L. International Journal of Electrochemical Science, 2022, 17, 220740-1.
19 Zhang H G, Zhang N, Fang F Z. Ultrasonics-Sonochemistry, 2020, 62, 104858-1.
20 Wang Y, Xiao W X, Ma K, et al. Corrosion Science, 2023, 224, 111546-1.
21 Wang X, Niu Z W, Wang X M, et al. Materials Reports, 2021, 35(5), 05107 (in Chinese).
王旭, 牛宗伟, 王晓明, 等. 材料导报, 2021, 35(5), 05107.
22 Xia F F, Wu M H, Jia Z Y, et al. Journal of Functional Materials, 2008, 39(4), 690(in Chinese).
夏法锋, 吴蒙华, 贾振元, 等.功能材料, 2008, 39(4), 690.
23 Xue J H, Wu M H. Plating and Finishing, 2016, 38(12), 12(in Chinese).
雪金海, 吴蒙华.电镀与精饰, 2016, 38(12), 12.
24 Qian N K, Wu M H, Jia W P, et al. Rare Metal Materials and Engineering, 2021, 50(3), 918(in Chinese).
钱宁开, 吴蒙华, 贾卫平, 等.稀有金属材料与工程, 2021, 50(3), 918.
25 Li H W, Xing L L, Niu Y S, et al. Materials Research, 2020, 23, e20200291-1.
26 Huang A N, Zhang Z, Fu B, et al. Journal of Applied Acoustics, 2022, 41(1), 103 (in Chinese).
黄安楠, 张震, 傅波, 等. 应用声学, 2022, 41(1), 103.
27 Li A X, Zhu Z W, Xue Z M, et al. Materials Research Bulletin, 2022, 150, 111778-1.
28 Ma C Y, Yu W Y, Jiang M Z, et al. Ceramics International, 2018, 44, 5163.
29 Cordero Z C, Knight B E, Schuh C A. International Materials Reviews, 2016, 61, 494.
30 Gong C M. Study on preparation of nanocrystalline copper by pulse electrodeposition and its tribological properties. Master's Thesis, Guangdong University of Technology, China, 2021 (in Chinese).
龚承敏. 脉冲电沉积制备纳米晶铜及其摩擦学特性研究. 硕士学位论文, 广东工业大学, 2021.
31 Ming W. Study of mechanical properties and deformation mechanism of nanocrystalline nickel under cryogenic temperature. Master's Thesis, North China University of Technology, China, 2021 (in Chinese).
闵威. 纳米晶镍低温力学性能及变形机理研究. 硕士学位论文, 北方工业大学, 2021.
[1] 单既万, 胡正飞, 王宇, 姚骋, 张振. 泡沫铝冶金连接及其界面结构与力学性能研究[J]. 《材料导报》期刊社, 2017, 31(8): 94-97.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed