Research Progress on Functionalized Nano-modified Cement-based Materials
XU Peng1,2, ZHANG Xuanhan1,2, MING Gaolin1,2, SHI Shi1,2,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, Guangdong, China 2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518061, Guangdong, China
Abstract: Traditional cement-based materials cannot meet the requirements of complex civil engineering, as their functions are limited. Moreover, cement-based materials must evolve to meet the demands of intelligent buildings. Intelligent buildings not only need materials with high strength and excellent durability performance, but also require diversified features such as heat resistance, fire retardance, self-cleaning, electromagnetic interference shielding, and ion curing. Additionally, requirements of the national new materials and new energy development strategy make energy saving and emission reduction a key point in the development and application of new building materials. Intelligent building materials can promote the multi-functional development of modern architecture, realize the building intelligence, and further advance smart cities. Therefore, more and more research is devoted to the multifunctional development of nano-modified cementitious materials, which aims to provide an application basis for the green transformation of modern cementitious materials and the smart transformation of buildings. This review, proceeding from the functional modification of cement-based materials by typical nano-component materials(e.g., nano-SiO2, nano-TiO2, carbon nanotube(CNT), and graphene oxide(GO)), describes the different effects of properties, incorporation methods, and contents of nanomaterials on cement-based materials. Additionally, the influence of different modification methods and various other factors on a building’s thermal insulation, self-cleaning, fire retardance, electromagnetic interference shielding, and ion curing functions are analyzed from the perspective of different nanomaterial additions. Based on “nanomodification-functionalization” dependence, this paper proposes the concept of coordinated development of multiple functionalized nano-modified cement-based materials and finally provides guidelines and prospects for customizability in sustainable development of intelligent buildings.
1 Makul N. Journal of Cleaner Production, 2020, 274, 122899. 2 Land G, Stephan D. Cement and Concrete Composites, 2015, 57, 64. 3 Long W J, Wei J J, Ma H, et al. Nanomaterials (Basel), 2017, 7(12), 407. 4 De Azevedo N H, Gleize P J P. Construction and Building Materials, 2018, 169, 388. 5 Du F P, Xie S S, Zhang F, et al. Composites Part B: Engineering, 2016, 105, 93. 6 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Research, 2010, 40(7), 1052. 7 Wang L G, Zhang S P, Zheng D P, et al. Nanomaterials (Basel), 2017, 7(12), 429. 8 Li H, Xiao H G, Yuan J, et al.Composites Part B: Engineering, 2004, 35(2), 185. 9 Long W J, Gu Y C, Xiao B X, et al. Construction and Building Mate-rials, 2018,179, 661. 10 Akono A T. Journal of Materials Science, 2020, 55, 11106. 11 Xu H H, Smith D T, Simon C G. Biomaterials, 2004, 25(19), 4615. 12 Thomas J J, Jennings H M, Chen J J. The Journal of Physical Chemistry C, 2009, 113, 4327. 13 Björnström J, Martinelli A, Matic A, et al. Chemical Physics Letters, 2004, 392(1-3), 242. 14 Cruz-Moreno D, Fajardo G, Flores-Vivian I, et al. Applied Surface Science, 2020, 531, 147335. 15 Joshaghani A, Balapour M, Mashhadian M, et al. Construction and Building Materials, 2020, 245, 118444. 16 Koleva D A. Materials (Basel), 2018, 11(2), 39. 17 Unnikrishna Pillai U, Anand K B. Materials Today: Proceedings, 2021, 46(10), 4788. 18 Vitharana M G, Paul S C, Kong S Y, et al. Sustainable Materials and Technologies, 2020, 25, e00192. 19 Bostanci L. Journal of Building Engineering, 2020, 31, 101478. 20 Jittabut P, Pinitsoontorn S, Thongbai P, et al. Chiang Mai Journal of Science, 2016, 43(5), 1160. 21 Lee H, Song Y M, Loh K J, et al. Composite Structures, 2018, 202, 1042. 22 Jimenez-Relinque E, Rodriguez-Garcia J R, Castillo A, et al. Cement and Concrete Research, 2015, 71, 124. 23 Jimenez-Relinque E, Llorente I, Castellote M. Catalysis Today, 2017, 287, 203. 24 Atta-ur-Rehman, Lee Jeong Bae, Qudoos Abdul, et al. Journal of Cera-mic Processing Research, 2019, 20(3), 270. 25 Wang Z, Yu Q, Gauvin F, et al. Cement and Concrete Research, 2020, 136, 106156. 26 El-Gamal S M A, Ramadan M, Abo-El-Enein S A, et al. Journal of Thermal Analysis and Calorimetry, 2018, 131, 949. 27 Moro C, Francioso V, Velay-Lizancos M. Journal of Cleaner Production, 2020, 263, 121581. 28 Guler S, Fund Z, Türkmenoglu, et al. Construction and Building Mate-rials, 2020, 250, 118847. 29 Wang B, Guo Z, Han Y, et al. Construction and Building Materials, 2013, 46, 98. 30 Chen J, Zhao D, Ge H, et al. Construction and Building Materials, 2015, 84, 66. 31 Lu L, He Y, Ping B, et al. Construction and Building Materials, 2017, 134, 602. 32 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596 33 Li Z, Dong S, Pan W, et al. Construction and Building Materials, 2020, 57, 119566. 34 Long W J, Gu Y C, Zheng D, et al. Journal of Cleaner Production, 2018, 192, 151. 35 Bogas J A, Carriço A, Pereira M F C. Journal of Cleaner Production, 2019, 218, 377. 36 Reim M, Körner W, Manara J, et al. Solar Energy, 2005, 79(2), 131. 37 Liu G W, Zhou B, Ni X Y, et al. Journal of the Chinese Ceramic Society, 2012, 40(1), 161 (in Chinese). 刘光武, 周斌, 倪星元, 等. 硅酸盐学报, 2012, 40(1), 161. 38 Liu G W, Zhou B, Ni X Y, et al. Journal of the Chinese Ceramic Society, 2015, 43(7), 935 (in Chinese). 刘光武, 周斌, 倪星元, 等. 硅酸盐学报, 2015, 43(7), 935. 39 Abedi M, Fangueiro R, Correia A G. Journal of Nanomaterials, 2020, 2020, 20. 40 Wang Z X, Gauvin F, Feng P, et al. Construction and Building Mate-rials, 2020, 263, 120558. 41 Gonzalez J G, Gupta S, Loh K J. Proceedings of the IEEE, 2016, 104(8), 1547. 42 Hassanzadeh-Aghdam M K, Ansari R, Mahmoodi M J, et al. Cement and Concrete Composites, 2018, 90, 108. 43 Han B, Zhang K, Yu X. Journal of Solar Energy Engineering, 2013, 135(2), 024505. 44 Heikal M. Cement and Concrete Research, 2000, 30(11), 1835. 45 Lim S, Mondal P. Materials Characterization, 2014, 92, 15. 46 Poon C S, Azhar S, Anson M, et al. Cement and Concrete Composites, 2003, 25, 83. 47 Wang L, Zheng D, Zhang S, et al. Nanomaterials (Basel), 2016, 6(12), 241. 48 Wang R, Hashimoto K, Fujishima A, et al. Advance Materials, 1998, 10(2), 135. 49 Sakai N, Fujishima A, Watanabe T, et al. The Journal of Physical Che-mistry B, 2003, 107, 1028. 50 Zubkov T, Stahl D, Thompson T L, et al. The Journal of Physical Che-mistry. B, 2005, 109, 15454. 51 Mu N, Liu Y G, Hui Z, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1461 (in Chinese). 慕楠, 刘艳改, 惠壮,等. 硅酸盐学报, 2020, 48(9), 1461. 52 Bautista-Gutierrez K P, Herrera-May A L, Santamaria-Lopez J M, et al. Materials (Basel), 2019, 12(21), 3548. 53 Atta Ur R, Qudoos A, Jakhrani S H, et al. International Journal of Concrete Structures and Materials, 2019, 13(1), 35. 54 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2006, 28, 468. 21080265-955 Talbot P, Konn A M, Brosseau C. Journal of Magnetism and Magnetic Materials,2002, 249, 481. 56 Jin L, Bower C, Zhou O. Applied Physics Letters, 1998, 73(9), 1197. 57 Coppola L, Buoso A, Corazza F. Applied Mechanics and Materials, 2011, 82, 118. 58 Yang B J, Shin H, Lee H K, et al. Applied Physics Letters, 2013, 103(24), 241903. 59 Al-Saleh M H, Sundararaj U. Carbon, 2009, 47(7), 1738. 60 Kim H K, Park I S, Lee H K. Composite Structures, 2014, 116, 713. 61 Zhang Y, Zhi R T, Zhu F W, et al. Chinese Journal of Materials Research, 1995, 9(3), 284 (in Chinese). 张跃, 职任涛, 朱逢吾, 等. 材料研究学报, 1995, 9(3), 284. 62 Micheli D, Pastore R, Vricella A, et al. Materials Science and Enginee-ring: B, 2014, 188, 119. 63 Sun S, Ding S, Han B, et al. Composites Part B: Engineering, 2017, 129, 221. 64 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2007, 29(1), 49. 65 Nikbin I M, Mehdipour S, Dezhampanah S, et al. Radiation Physics and Chemistry, 2020, 174, 108967. 66 Luo R, Cai Y, Wang C, et al. Cement and Concrete Research, 2003, 33(1), 1. 67 Loser R, Lothenbach B, Leemann A, et al. Cement and Concrete Compo-sites, 2010, 32(1), 34. 68 Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research, 2018, 105, 81. 69 Mesbah A, François M, Cau-Dit-Coumes C, et al. Cement and Concrete Research, 2011, 41(5), 504. 70 Balonis M, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2010, 40(7), 1009. 71 Long W J, Ye T H, Li L X, et al. Nanomaterials (Basel), 2019, 9(2), 288. 72 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39(4), 340. 73 Long W J, Gu Y C, Xing F, et al. Cement and Concrete Composites, 2019, 104, 103337. 74 Wei Z, Wang Y, Qi M, et al. Construction and Building Materials, 2021, 293, 123507. 75 Junpeng M, Hongbo T, Hainan L, et al. Construction and Building Materials, 2018, 163, 812. 76 Mei J, Tan H, Li H, et al. Construction and Building Materials, 2018, 163, 812. 77 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596. 78 Sheng K, Li D, Yuan X. Journal of Building Engineering, 2021, 43, 103166. 79 Du H, Gao H J, Pang S D. Cement and Concrete Research, 2016, 83, 114. 80 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339 (in Chinese). 程志海,杨森,袁小亚. 复合材料学报, 2021, 38(2), 339. 81 Ying J, Jiang Z, Xiao J. Construction and Building Materials, 2022, 316, 125756. 82 Indukuri C S R, Nerella R. Journal of Building Engineering, 2021, 37, 102174. 83 Yang F, Zhou X, Pang F, et al. Construction and Building Materials, 2021, 303, 124460.