Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21080265-10    https://doi.org/10.11896/cldb.21080265
  无机非金属及其复合材料 |
纳米改性水泥基材料功能化研究进展
徐鹏1,2, 张轩翰1,2, 明高林1,2, 施诗1,2,*
1 深圳大学土木与交通工程学院,广东 深圳 518061
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518061
Research Progress on Functionalized Nano-modified Cement-based Materials
XU Peng1,2, ZHANG Xuanhan1,2, MING Gaolin1,2, SHI Shi1,2,*
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061, Guangdong, China
2 Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518061, Guangdong, China
下载:  全 文 ( PDF ) ( 7366KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统水泥基材料功能单一,无法满足现代社会快速发展的物质文明与复杂工程需求。现代建筑的智能化进程对水泥基材料的发展提出了新挑战,除了满足高强度、高耐久性等基本要求,还需要其具有多样化的附加性能(如保温、耐火、自清洁、电磁屏蔽以及离子固化等),以推动现代建筑的多功能化发展,实现建筑的智慧化转型,布局智慧城市建设。此外,为响应国家新材料新能源发展战略的要求,建筑的节能环保效应成为了水泥基材料发展与应用的又一重大难题。因此,越来越多的研究致力于纳米改性水泥基材料的多功能化发展,旨在为现代水泥基材料的绿色转型及建筑的智慧化转型提供应用基础。本文从纳米SiO2、纳米TiO2、碳纳米管(CNT)及氧化石墨烯(GO)等纳米材料对水泥基材料的功能化改性入手,比较与分析了不同纳米材料的特性、掺入方式及掺量等因素对水泥基材料功能化改性性能的影响;从材料层面分析了不同改性方式对水泥基材料功能化的主要影响机理。最后,本文以“纳米改性-功能化”对应关系的建立为前提,提出了纳米改性水泥基材料多功能协同发展的概念,为现代建筑绿色可持续发展提供依据并提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐鹏
张轩翰
明高林
施诗
关键词:  纳米材料  水泥基材料  改性  功能化  绿色智能建筑    
Abstract: Traditional cement-based materials cannot meet the requirements of complex civil engineering, as their functions are limited. Moreover, cement-based materials must evolve to meet the demands of intelligent buildings. Intelligent buildings not only need materials with high strength and excellent durability performance, but also require diversified features such as heat resistance, fire retardance, self-cleaning, electromagnetic interference shielding, and ion curing. Additionally, requirements of the national new materials and new energy development strategy make energy saving and emission reduction a key point in the development and application of new building materials. Intelligent building materials can promote the multi-functional development of modern architecture, realize the building intelligence, and further advance smart cities. Therefore, more and more research is devoted to the multifunctional development of nano-modified cementitious materials, which aims to provide an application basis for the green transformation of modern cementitious materials and the smart transformation of buildings. This review, proceeding from the functional modification of cement-based materials by typical nano-component materials(e.g., nano-SiO2, nano-TiO2, carbon nanotube(CNT), and graphene oxide(GO)), describes the different effects of properties, incorporation methods, and contents of nanomaterials on cement-based materials. Additionally, the influence of different modification methods and various other factors on a building’s thermal insulation, self-cleaning, fire retardance, electromagnetic interference shielding, and ion curing functions are analyzed from the perspective of different nanomaterial additions. Based on “nanomodification-functionalization” dependence, this paper proposes the concept of coordinated development of multiple functionalized nano-modified cement-based materials and finally provides guidelines and prospects for customizability in sustainable development of intelligent buildings.
Key words:  nanomaterials    cement-based materials    modification    functional    green smart building
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TU528  
通讯作者:  *施诗,深圳大学土木与交通工程学院副研究员。2009年7月本科毕业于北京科技大学材料科学与工程学院材料化学系,2015年3月在日本北海道大学取得博士学位,2015至2019年分别在美国威斯康星大学麦迪逊分校工程物理系、南方科技大学机械与能源工程系进行研究工作。2019年进入深圳大学土木与交通工程学院,主要从事光电半导体材料及光电化学阴极保护方向的研究工作。近五年在Materials Science and Engineering A、Acta Materialia、Nature Communications等权威期刊上发表论文。sshi.eng@outlook.com   
作者简介:  徐鹏,2020年6月毕业于合肥工业大学,获得工学学士学位。现为深圳大学土木与交通工程学院硕士研究生,在龙武剑教授的指导下进行研究。目前主要研究领域为纳米改性水泥基材料耐久性提升研究。
引用本文:    
徐鹏, 张轩翰, 明高林, 施诗. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 21080265-10.
XU Peng, ZHANG Xuanhan, MING Gaolin, SHI Shi. Research Progress on Functionalized Nano-modified Cement-based Materials. Materials Reports, 2023, 37(16): 21080265-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080265  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21080265
1 Makul N. Journal of Cleaner Production, 2020, 274, 122899.
2 Land G, Stephan D. Cement and Concrete Composites, 2015, 57, 64.
3 Long W J, Wei J J, Ma H, et al. Nanomaterials (Basel), 2017, 7(12), 407.
4 De Azevedo N H, Gleize P J P. Construction and Building Materials, 2018, 169, 388.
5 Du F P, Xie S S, Zhang F, et al. Composites Part B: Engineering, 2016, 105, 93.
6 Konsta-Gdoutos M S, Metaxa Z S, Shah S P. Cement and Concrete Research, 2010, 40(7), 1052.
7 Wang L G, Zhang S P, Zheng D P, et al. Nanomaterials (Basel), 2017, 7(12), 429.
8 Li H, Xiao H G, Yuan J, et al.Composites Part B: Engineering, 2004, 35(2), 185.
9 Long W J, Gu Y C, Xiao B X, et al. Construction and Building Mate-rials, 2018,179, 661.
10 Akono A T. Journal of Materials Science, 2020, 55, 11106.
11 Xu H H, Smith D T, Simon C G. Biomaterials, 2004, 25(19), 4615.
12 Thomas J J, Jennings H M, Chen J J. The Journal of Physical Chemistry C, 2009, 113, 4327.
13 Björnström J, Martinelli A, Matic A, et al. Chemical Physics Letters, 2004, 392(1-3), 242.
14 Cruz-Moreno D, Fajardo G, Flores-Vivian I, et al. Applied Surface Science, 2020, 531, 147335.
15 Joshaghani A, Balapour M, Mashhadian M, et al. Construction and Building Materials, 2020, 245, 118444.
16 Koleva D A. Materials (Basel), 2018, 11(2), 39.
17 Unnikrishna Pillai U, Anand K B. Materials Today: Proceedings, 2021, 46(10), 4788.
18 Vitharana M G, Paul S C, Kong S Y, et al. Sustainable Materials and Technologies, 2020, 25, e00192.
19 Bostanci L. Journal of Building Engineering, 2020, 31, 101478.
20 Jittabut P, Pinitsoontorn S, Thongbai P, et al. Chiang Mai Journal of Science, 2016, 43(5), 1160.
21 Lee H, Song Y M, Loh K J, et al. Composite Structures, 2018, 202, 1042.
22 Jimenez-Relinque E, Rodriguez-Garcia J R, Castillo A, et al. Cement and Concrete Research, 2015, 71, 124.
23 Jimenez-Relinque E, Llorente I, Castellote M. Catalysis Today, 2017, 287, 203.
24 Atta-ur-Rehman, Lee Jeong Bae, Qudoos Abdul, et al. Journal of Cera-mic Processing Research, 2019, 20(3), 270.
25 Wang Z, Yu Q, Gauvin F, et al. Cement and Concrete Research, 2020, 136, 106156.
26 El-Gamal S M A, Ramadan M, Abo-El-Enein S A, et al. Journal of Thermal Analysis and Calorimetry, 2018, 131, 949.
27 Moro C, Francioso V, Velay-Lizancos M. Journal of Cleaner Production, 2020, 263, 121581.
28 Guler S, Fund Z, Türkmenoglu, et al. Construction and Building Mate-rials, 2020, 250, 118847.
29 Wang B, Guo Z, Han Y, et al. Construction and Building Materials, 2013, 46, 98.
30 Chen J, Zhao D, Ge H, et al. Construction and Building Materials, 2015, 84, 66.
31 Lu L, He Y, Ping B, et al. Construction and Building Materials, 2017, 134, 602.
32 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596
33 Li Z, Dong S, Pan W, et al. Construction and Building Materials, 2020, 57, 119566.
34 Long W J, Gu Y C, Zheng D, et al. Journal of Cleaner Production, 2018, 192, 151.
35 Bogas J A, Carriço A, Pereira M F C. Journal of Cleaner Production, 2019, 218, 377.
36 Reim M, Körner W, Manara J, et al. Solar Energy, 2005, 79(2), 131.
37 Liu G W, Zhou B, Ni X Y, et al. Journal of the Chinese Ceramic Society, 2012, 40(1), 161 (in Chinese).
刘光武, 周斌, 倪星元, 等. 硅酸盐学报, 2012, 40(1), 161.
38 Liu G W, Zhou B, Ni X Y, et al. Journal of the Chinese Ceramic Society, 2015, 43(7), 935 (in Chinese).
刘光武, 周斌, 倪星元, 等. 硅酸盐学报, 2015, 43(7), 935.
39 Abedi M, Fangueiro R, Correia A G. Journal of Nanomaterials, 2020, 2020, 20.
40 Wang Z X, Gauvin F, Feng P, et al. Construction and Building Mate-rials, 2020, 263, 120558.
41 Gonzalez J G, Gupta S, Loh K J. Proceedings of the IEEE, 2016, 104(8), 1547.
42 Hassanzadeh-Aghdam M K, Ansari R, Mahmoodi M J, et al. Cement and Concrete Composites, 2018, 90, 108.
43 Han B, Zhang K, Yu X. Journal of Solar Energy Engineering, 2013, 135(2), 024505.
44 Heikal M. Cement and Concrete Research, 2000, 30(11), 1835.
45 Lim S, Mondal P. Materials Characterization, 2014, 92, 15.
46 Poon C S, Azhar S, Anson M, et al. Cement and Concrete Composites, 2003, 25, 83.
47 Wang L, Zheng D, Zhang S, et al. Nanomaterials (Basel), 2016, 6(12), 241.
48 Wang R, Hashimoto K, Fujishima A, et al. Advance Materials, 1998, 10(2), 135.
49 Sakai N, Fujishima A, Watanabe T, et al. The Journal of Physical Che-mistry B, 2003, 107, 1028.
50 Zubkov T, Stahl D, Thompson T L, et al. The Journal of Physical Che-mistry. B, 2005, 109, 15454.
51 Mu N, Liu Y G, Hui Z, et al. Journal of the Chinese Ceramic Society, 2020, 48(9), 1461 (in Chinese).
慕楠, 刘艳改, 惠壮,等. 硅酸盐学报, 2020, 48(9), 1461.
52 Bautista-Gutierrez K P, Herrera-May A L, Santamaria-Lopez J M, et al. Materials (Basel), 2019, 12(21), 3548.
53 Atta Ur R, Qudoos A, Jakhrani S H, et al. International Journal of Concrete Structures and Materials, 2019, 13(1), 35.
54 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2006, 28, 468.
21080265-955 Talbot P, Konn A M, Brosseau C. Journal of Magnetism and Magnetic Materials,2002, 249, 481.
56 Jin L, Bower C, Zhou O. Applied Physics Letters, 1998, 73(9), 1197.
57 Coppola L, Buoso A, Corazza F. Applied Mechanics and Materials, 2011, 82, 118.
58 Yang B J, Shin H, Lee H K, et al. Applied Physics Letters, 2013, 103(24), 241903.
59 Al-Saleh M H, Sundararaj U. Carbon, 2009, 47(7), 1738.
60 Kim H K, Park I S, Lee H K. Composite Structures, 2014, 116, 713.
61 Zhang Y, Zhi R T, Zhu F W, et al. Chinese Journal of Materials Research, 1995, 9(3), 284 (in Chinese).
张跃, 职任涛, 朱逢吾, 等. 材料研究学报, 1995, 9(3), 284.
62 Micheli D, Pastore R, Vricella A, et al. Materials Science and Enginee-ring: B, 2014, 188, 119.
63 Sun S, Ding S, Han B, et al. Composites Part B: Engineering, 2017, 129, 221.
64 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2007, 29(1), 49.
65 Nikbin I M, Mehdipour S, Dezhampanah S, et al. Radiation Physics and Chemistry, 2020, 174, 108967.
66 Luo R, Cai Y, Wang C, et al. Cement and Concrete Research, 2003, 33(1), 1.
67 Loser R, Lothenbach B, Leemann A, et al. Cement and Concrete Compo-sites, 2010, 32(1), 34.
68 Qu Z Y, Yu Q L, Brouwers H J H. Cement and Concrete Research, 2018, 105, 81.
69 Mesbah A, François M, Cau-Dit-Coumes C, et al. Cement and Concrete Research, 2011, 41(5), 504.
70 Balonis M, Lothenbach B, Le Saout G, et al. Cement and Concrete Research, 2010, 40(7), 1009.
71 Long W J, Ye T H, Li L X, et al. Nanomaterials (Basel), 2019, 9(2), 288.
72 Elakneswaran Y, Nawa T, Kurumisawa K. Cement and Concrete Research, 2009, 39(4), 340.
73 Long W J, Gu Y C, Xing F, et al. Cement and Concrete Composites, 2019, 104, 103337.
74 Wei Z, Wang Y, Qi M, et al. Construction and Building Materials, 2021, 293, 123507.
75 Junpeng M, Hongbo T, Hainan L, et al. Construction and Building Materials, 2018, 163, 812.
76 Mei J, Tan H, Li H, et al. Construction and Building Materials, 2018, 163, 812.
77 Liu X, Ma B, Tan H, et al. Cement and Concrete Composites, 2020, 110, 103596.
78 Sheng K, Li D, Yuan X. Journal of Building Engineering, 2021, 43, 103166.
79 Du H, Gao H J, Pang S D. Cement and Concrete Research, 2016, 83, 114.
80 Cheng Z H, Yang S, Yuan X Y. Acta Materiae Compositae Sinica, 2021, 38(2), 339 (in Chinese).
程志海,杨森,袁小亚. 复合材料学报, 2021, 38(2), 339.
81 Ying J, Jiang Z, Xiao J. Construction and Building Materials, 2022, 316, 125756.
82 Indukuri C S R, Nerella R. Journal of Building Engineering, 2021, 37, 102174.
83 Yang F, Zhou X, Pang F, et al. Construction and Building Materials, 2021, 303, 124460.
[1] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[2] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[3] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[4] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[5] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[6] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[7] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[8] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[9] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[10] 赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
[11] 孙滢斐, 张攀, 胡敬平, 杨家宽, 侯慧杰. 地聚物在重金属铅固化中的研究进展[J]. 材料导报, 2023, 37(7): 21080091-7.
[12] 李佳炜, 朱宏伟. 纳米材料在病毒检测中的应用研究进展[J]. 材料导报, 2023, 37(6): 21070090-11.
[13] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[14] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[15] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed