Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14065-14071    https://doi.org/10.11896/cldb.20030196
  无机非金属及其复合材料 |
干湿循环下含初始损伤泡沫混凝土劣化机理研究
刘鑫1,2,3,*, 倪铖伟1,2,4, 孙东宁1,2,4, 邵志伟1,2,4, 史云强1,2,4
1 河海大学岩土力学与堤坝工程教育部重点实验室,南京 210098
2 河海大学,江苏省岩土工程技术工程研究中心,南京 210098
3 河海大学隧道与地下工程研究所,南京 210098
4 河海大学岩土工程科学研究所,南京 210098
Study on Deterioration Mechanism of Lightweight Cellular Concrete with Initial Damage Under Wetting-drying Cycles
LIU Xin1,2,3,*, NI Chengwei1,2,4, SUN Dongning1,2,4, SHAO Zhiwei1,2,4, SHI Yunqiang1,2,4
1 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University,Nanjing 210098,China
2 Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098,China
3 Institute of Tunnel and Underground Engineering, Hohai University, Nanjing 210098, China
4 Geotechnical Research Institute, Hohai University, Nanjing 210098, China
下载:  全 文 ( PDF ) ( 3441KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫混凝土,也称气泡混合轻质土,是一种新型的人工轻质土工材料,其由物理方法将水泥、水、发泡剂以及一些可添加材料(粉煤灰、玻璃纤维等)按一定比例混合而成,作为公路路堤填料在工程中应用广泛,但其耐久性问题始终困扰着工程人员。实际上,轻质土在生产的全过程中的各个阶段会产生由不同因素导致的损伤。因此,本工作分析施工工艺及外部环境因素对轻质土造成的初始损伤,并在此基础上研究干湿循环作用下轻质土物理力学性质的劣化规律。采用抗压强度定义损伤变量,并从微细观角度将孔隙面积率作为损伤演化的特征参数;借助MATLAB拟合强度与孔隙面积率和干湿循环次数的变化规律,得到不同初始损伤形式的强度劣化关系式;最后建立与孔隙面积率和干湿循环次数有关的损伤演化方程,并对演化方程进行验证。实验结果表明,不同施工工艺造成含初始损伤的试样的孔隙面积率皆随干湿循环的进行而增大,试样强度随孔隙面积率的增大呈非线性减小。分析劣化原因为:干湿循环次数增加,试样含水率不同造成内部受热膨胀存在差异,温度应力不断发展,微裂缝不断形成,因而孔隙面积率增加,强度逐渐劣化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘鑫
倪铖伟
孙东宁
邵志伟
史云强
关键词:  泡沫混凝土  强度劣化  微细观试验  初始损伤  干湿循环    
Abstract: Lightweight cellular concrete (LCC) is a new class of geotechnical engineering materials, which can be produced by physical method mixing cement, water, foaming agent and some additive materials (fly ash, glass fiber, etc.) in a certain proportion. It has been widely utilized in the highway embankment filling, but the durability problem always troubles engineers. In fact, the damage caused by different factors will occur in the whole process of the production of LCC. Therefore, this paper mainly analyzed the initial damage caused by construction technology and external environmental factors. Meanwhile, the deterioration mechanism of physical and mechanical characteristics of samples with initial damage under the wetting-drying (w-d)cycles was studied. In the microscopic test, the damage variable was defined by unconfined compressive strength, and the porosity area ratio was used as a characteristic parameter to describe the damage evolution. MATLAB was used to fit the variation law of strength, versus porosity area ratio and the number of w-d cycles, and the strength deterioration relations of samples with different initial damage forms were obtained. Eventually, the damage evolution equations related to porosity area ratio and the number of w-d cycles were established and verified. The results make clear that, the porosity area ratio of samples with initial damage caused by different construction techniques all increases with the w-d cycles, and the strength decreases nonlinearly with the increase of porosity area ratio. As the number of w-d cycles increases, the different moisture content of the sample causes differences in internal thermal expansion. The temperature stress continues to develop and micro-cracks continue to form, so the porosity area ratio increases, and the strength gradually deteriorates and decreases.
Key words:  lightweight cellular concrete (LCC)    strength degradation    microscopic test    initial damage    wetting-drying cycle
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TU528.2  
基金资助: 国家自然科学基金青年基金(51609071);中央高校基本科研业务费(B200202087);国家留学基金(201806715014)
通讯作者:  * liuxin100@hhu.edu.cn   
作者简介:  刘鑫,河海大学土木与交通学院副教授,硕士研究生导师。2011年毕业于河海大学,获岩土工程博士学位。同年加入土木与交通学院隧道与地下工程研究所工作至今,主要从事岩土体多尺度结构与力学特性、特殊土改良与损伤机理、地下工程安全与环境影响研究。在国内外重要期刊发表文章30余篇,主持科研项目20余项。于2018—2019年在加利福尼亚大学欧文分校任访问学者。
引用本文:    
刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
LIU Xin, NI Chengwei, SUN Dongning, SHAO Zhiwei, SHI Yunqiang. Study on Deterioration Mechanism of Lightweight Cellular Concrete with Initial Damage Under Wetting-drying Cycles. Materials Reports, 2021, 35(14): 14065-14071.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030196  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14065
1 Cai L, Chen Z P, Wu L J. Journal of Highway and Transportation Research and Development, 2005, 22(12), 71(in Chinese).
蔡力, 陈忠平, 吴立坚.公路交通科技, 2005, 22(12), 71.
2 Watabe Y, Noguchi T, Mitarai Y. Journal of ASTM International, 2012, 9(4), 1.
3 Yang Y, Chen B. KSCE Journal of Civil Engineering, 2016, 20(6), 2420.
4 Wang H, Chen W, Tan X, et al. Journal of Central South University, 2012, 19(11), 3305.
5 Suksiripattanapong C, Horpibulsuk S, Boongrasan S, et al. Construction and Building Materials, 2015, 94, 807.
6 Xu J X, Liu X L. Journal of Shanghai Jiaotong University, 2006(6), 1038(in Chinese).
徐俊祥, 刘西拉.上海交通大学学报, 2006(6), 1038.
7 Liu X, Gan L Q, Sheng K, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(10), 1793(in Chinese).
刘鑫, 甘亮琴, 盛柯, 等.岩土工程学报, 2017, 39(10), 1793.
8 Tikalsky P J, Pospisil J, MacDonald W. Cement and Concrete Research,2004, 34(5), 889.
9 Zhang Z, Provis J L, Reid A, et al. Construction and Building Mate-rials, 2014, 56, 113.
10 Kamei T, Takashima J I, Shibi T. Soils and Foundations, 2008, 48(6), 833.
11 Jerman M, Keppert M, Výborný J, et al. Construction and Building Materials, 2013, 41, 352.
12 Zhang C L, Huang J C, Xiong Y S, et al. Journal of Wuhan University of Technology, 2014, 36(8), 32(in Chinese).
章灿林,黄俭才,熊永松,等.武汉理工大学学报,2014,36(8),32.
13 Gu H D, Gu X. Highway, 2005(5), 125(in Chinese).
顾欢达, 顾熙.公路, 2005(5), 125.
14 Horpibulsuk S, Suddeepong A, Chinkulkijniwat A, et al. Applied Clay Science, 2012, 69, 11.
15 Liu K, Li R M, Du Y J, et al. Rock and Soil Mechanics, 2015, 36(S1), 362(in Chinese).
刘楷, 李仁民, 杜延军, 等.岩土力学, 2015, 36(S1), 362.
16 Neramitkornburi A, Horpibulsuk S, Shen S L, et al. Construction and Building Materials, 2015, 77, 41.
17 He X, Yin J, Yang J, et al. Materiali in Tehnologije, 2019, 53(2), 177.
18 Kayali O, Ahmed M S. Construction and Building Materials, 2013, 39, 71.
19 Chen C, Gu H D, Chen D Q. Journal of Yangtze River Scientific Research Institute, 2017, 34(1), 114(in Chinese).
陈晨, 顾欢达, 陈冬青.长江科学院院报, 2017, 34(1), 114.
20 Gao R D, Zhao S B, Li Q B, et al. China Civil Engineering Journal, 2010, 43(2), 48(in Chinese).
高润东, 赵顺波, 李庆斌, 等.土木工程学报, 2010, 43(2), 48.
21 Yang Y G, Zhang Y S, She W, et al. Journal of Building Materials, 2017, 20(5), 705(in Chinese).
杨永敢, 张云升, 佘伟, 等.建筑材料学报, 2017, 20(5), 705.
22 Li Y, Guan Z Z, Wang Z G, et al. Concrete, 2019(9), 6(in Chinese).
李悦, 管忠正, 王子赓, 等.混凝土, 2019(9), 6.
23 Liu X, Ni C, Ji H, et al. Advances in Materials Science and Engineering, 2019, 2019(4),1.
24 ASTM D4843-88(2016), Standard test method for wetting and drying test of solid wastes, ASTM International, West Conshohocken, PA, USA, 2016.
[1] 董瑞鑫, 申向东, 薛慧君, 刘倩. 干湿循环作用下风积沙混凝土的抗硫酸盐侵蚀机理[J]. 材料导报, 2020, 34(24): 24040-24044.
[2] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思. 干湿循环与风沙吹蚀作用下风积沙混凝土的抗硫酸盐耐久性[J]. 材料导报, 2020, 34(20): 20053-20060.
[3] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[4] 潘慧敏,付军,赵庆新. 硬化期受扰动混凝土的抗硫酸盐侵蚀性能[J]. 《材料导报》期刊社, 2018, 32(2): 282-287.
[5] 白光,田义,余林文,王磊. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 《材料导报》期刊社, 2018, 32(12): 2096-2099.
[6] 刘晓英, 肖玉, 彭家惠. 微纳技术在泡沫混凝土中的应用进展*[J]. 《材料导报》期刊社, 2017, 31(3): 80-85.
[7] 陶德彪, 蒋林华, 金鸣, 白舒雅, 姜少博. 银/氯化银电极用于监测混凝土中氯离子含量的研究*[J]. 《材料导报》期刊社, 2017, 31(20): 101-106.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed