Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14030-14034    https://doi.org/10.11896/cldb.20030179
  无机非金属及其复合材料 |
面向石墨模具精密加工的金刚石涂层结构及性能
李洪*, 许伟, 苏一凡, 林松盛, 代明江, 石倩
广东省科学院,广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650
Structure and Performance of Diamond Coating for Graphite Mold Precision Machining
LI Hong*, XU Wei, SU Yifan, LIN Songsheng, DAI Mingjiang, SHI Qian
The Key Laboratory of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangdong Institute of New Materials,Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 3449KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金刚石涂层具有接近天然金刚石的超高硬度及耐磨性,被认为是精密加工石墨模具的理想刀具涂层材料。金刚石涂层与刀具基体间的结合力及涂层表面状态是高速干式切削加工质量及效率的关键,金刚石涂层前处理过程控制及涂层工艺是影响金刚石涂层刀具综合性能的重要因素。本工作基于热丝化学气相沉积技术,采用酸-碱-酸三步法对硬质合金材料进行前处理,在涂层沉积过程中采用大气流量及高炉压沉积工艺在刀具基体表面沉积金刚石涂层。采用扫描电镜(SEM)、原子力显微镜(AFM)、拉曼光谱(Raman)、X射线衍射光谱(XRD)对涂层微观结构及物相结构进行分析表征,利用纳米压痕仪对金刚石涂层硬度进行测试,利用喷砂试验测试金刚石涂层的抗冲刷性能,利用石墨模具切削试验表征金刚石涂层刀具的切削性能。结果表明,金刚石涂层呈典型八面体结构,涂层与基体紧密结合、无明显孔隙,金刚石涂层刀具表面粗糙度为157 nm,sp3键含量大于98%,(涂层硬度大于90 GPa),涂层沿(111)面择优生长,抗冲刷时间大于150 s(0.5 MPa,120目),涂层刀具高速切削石墨模具2 h后,被加工面表面粗糙度小于1 μm,达到进口刀具水平。切削完成后刀具前刀面出现少量崩缺,前刀面磨损是此类刀具加工石墨模具的主要磨损形式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李洪
许伟
苏一凡
林松盛
代明江
石倩
关键词:  金刚石涂层  刀具  石墨模具  结构及性能    
Abstract: Diamond coating has ultra-high hardness and wear resistance which was close to that of natural diamond, and is considered to be an ideal tool coating material for precision machining of graphite molds. The bonding force between the diamond coating and the substrate, and the surface state of the coating are the keys to the quality and efficiency of high-speed dry cutting. The pre-treatment of the diamond coating and the coating process are important factors that affect the property of the diamond-coated tool. This article used acid-alkali-acid three-step method to pre-treat the cemented carbide materials based on hot-wire chemical vapor deposition technology. Atmospheric flow rate and high pressure deposition process were used to deposit diamond coating on the tool substrate. Scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectroscopy (Raman), X-ray diffraction spectroscopy (XRD) were used to analyze and characterize the coating microstructure and phase structure. The sand blast test was used to test the erosion resistance of the diamond coating, and the graphite mold cutting test was used to characterize the cutting performance of the diamond coated tool. The results show that the diamond coating has a typical octahedral structure, the coating and the substrate are closely combined without obvious pores, the surface roughness of the diamond coated tool is about 150 nm, the content sp3 is more than 98%, the coating hardness is higher than 90 GPa, diamond coating grows preferentially along the (111) plane, the erosion resistance time is greater than 150 s (0.5 MPa, 120 mesh), the roughness of the processed surface is less than 1μm after high-speed cutting graphite mold for 2 h, reaching the level of imported tools. There is a small amount of chipping on the rake face of the tool after the cutting. Therefore, the wear of the rake face is the main form of wear for processing graphite molds.
Key words:  diamond coating    cutting tool    graphite mold    structure and property
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TG174.444  
基金资助: 广东省重点领域研发计划项目(2020B010185001);广州市重点领域研发计划项目(202007020008);广东省科学院项目(2020GDASYL-20200105004;2018GDASCX-0402;2018GDASCX-0111)
通讯作者:  * lihong@gdinm.com   
作者简介:  李洪,广东省新材料研究所工程师。2016年1月毕业于北京科技大学,获材料科学与工程专业博士学位。同年7月加入广东省新材料研究所真空镀膜研究室工作至今,主要从事金刚石涂层制备工艺开发,重点研究超硬涂层的制备、表征及应用。在国内外重要期刊发表文章10余篇,申报发明专利5项,授权发明专利2项。
引用本文:    
李洪, 许伟, 苏一凡, 林松盛, 代明江, 石倩. 面向石墨模具精密加工的金刚石涂层结构及性能[J]. 材料导报, 2021, 35(14): 14030-14034.
LI Hong, XU Wei, SU Yifan, LIN Songsheng, DAI Mingjiang, SHI Qian. Structure and Performance of Diamond Coating for Graphite Mold Precision Machining. Materials Reports, 2021, 35(14): 14030-14034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20030179  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14030
1 Xue Y, Tian Q C. Materials Reports A: Review Papers, 2019, 33(11), 353(in Chinese).
薛艺,田青超. 材料导报:综述篇, 2019, 33(11),353.
2 Xiong Y H, Huang J. Carbon Techniques, 2017,36(2), 7(in Chinese).
熊云虎, 黄健. 炭素技术, 2017, 36(2), 7.
3 Xu L, Sai Q F, Wu S, et al. Cemented Carbide, 2018, 35(6), 447(in Chinese).
徐雳, 赛庆峰, 吴石, 等. 硬质合金, 2018, 35(6), 447.
4 He L, Gong R H, He G, et al. Glass, 2018, 10, 45(in Chinese).
何亮, 宫汝华, 何根, 等. 玻璃, 2018, 10, 45.
5 Liu B, Cui Z J, Tan J H, et al. Die & Mould Industry, 2017, 43(11), 1(in Chinese).
刘斌, 崔志杰, 谭景焕, 等. 模具工业, 2017, 43(11), 1.
6 Hao C, Zhu H, Deng W L, et al. Cemented Carbide, 2017, 34(2), 136(in Chinese).
郝岑, 朱灏, 邓雯丽, 等. 硬质合金, 2017, 34(2), 136.
7 Xiang D H, Guo Z H, Feng H R, et al. Surface Technology, 2018, 47(8), 122(in Chinese).
向道辉, 郭振海, 冯浩人, 等. 表面技术, 2018, 47(8),122.
8 Hu Z L, Wang C Y, Zhou L, et al. Key Engineering Materials, 2006, 315-316,319.
9 Zhou Y H.Research on the cutting performance of diamond coated tools when high-speed milling of graphite electrode materials.Master's Thesis, Guangdong University of Technology, China, 2011 (in Chinese).
周玉海. 金刚石涂层刀具高速铣削石墨电极材料切削性能研究.硕士学位论文,广东工业大学, 2011.
10 Nieminen I, Paro J, Kauppinen V. Journal of Materials Processing Technology, 1996,56(1-4),24.
11 Yang Y K, Shie J R, Huang C H. Advanced Manufacturing Processes, 2006,21(8),832.
12 Yin C, Mao S W. Cemented Carbide, 2016, 33(4), 275(in Chinese).
尹超, 毛善文. 硬质合金, 2016, 33(4), 275.
13 Zhou Y H, Wang C Y. Tool Engineering, 2018, 52(9),3(in Chinese).
周玉海, 王成勇. 工具技术, 2018, 52(9),3.
14 Sarangi S K, Chattopadhya Y A, Chattopadhyay A K. Applied Surface Science, 2008, 254(13), 3721.
15 Abreu C S, Amaral M, Oliveira F J, et al. Diamond and Related Mate-rials, 2006, 15(11-12), 2024.
16 Cabral G, Gäbler J, Lindner J, et al. Diamond and Related Materials, 2008, 17(6), 1008.
17 Barbosa D C, Almeida F A, Silva R F, et al. Diamond and Related Materials, 2009, 18(10), 1283.
18 Roy M, George V C, Dua A K, et al. Diamond and Related Materials, 2002, 11(11), 1858.
19 Ballutaud D, Jomard F, Kociniewski T, et al. Diamond and Related Materials, 2008, 17(4-5), 451.
20 May P W, Ashfold M N, Mankelevich Y A. Material Science Foundations,Scanning Probe Microscopes from Surface Structure to Nano-scale Engineering, 2010, 65-66, 145.
21 Chou C C, Lee J W, Chen Y I. Surface and Coatings Technology, 2008, 203(5-7), 704.
22 Debarros M I, Vandenbulcke L. Diamond and Related Materials, 2000, 9(11), 1862.
23 Li J G, Hu W J. China Measurement & Testing Technology, 2012, 38(2), 13(in Chinese).
李建国, 胡文军. 中国测试, 2012, 38(2), 13.
24 Lu W Z, Zuo D W, Ren W T, et al. Journal of Synthetic Crystals, 2009, 38(1), 159(in Chinese).
卢文壮, 左敦稳, 任卫涛, 等. 人工晶体学报, 2009, 38(1), 159.
25 Yan X J, Hermann I. Vacuum Electronics, 2003(3), 24(in Chinese).
严学俭, Hermann I. 真空电子技术, 2003(3), 24.
26 Cabral G, Reis P, Polini R, et al. Diamond and Related Materials, 2006, 15(10), 1753.
27 Deuerler F, Gruner H, Pohl M, et al. Surface and Coatings Technology, 2001,142, 674.
28 Yang X F, Li Y S, Yan G H, et al. Manufacturing Technology & Machine Tool, 2013(6), 58(in Chinese).
杨小璠, 李友生, 鄢国洪, 等. 制造技术与机床, 2013(6),58.
[1] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed