Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 20120018-9    https://doi.org/10.11896/cldb.20120018
  金属与金属基复合材料 |
硬质合金与钢焊接的研究进展
陈刚1,*, 邓人钦1, 薛伟2, 孙瑜蔓1, 田茂森1, 唐啸天1
1 湖南大学材料科学与工程学院,长沙 410082
2 中南大学高性能复杂制造国家重点实验室, 长沙 410083
Research Progress of Welding Between Cemented Carbide and Steel
CHEN Gang1,*, DENG Renqin1, XUE Wei2, SUN Yuman1, TIAN Maosen1, TANG Xiaotian1
1 College of Materials Science and Engineering,Hunan University, Changsha 410082, China
2 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 3004KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硬质合金与钢的连接可以实现高硬度、高强韧的理想结合,从而极大地拓展硬质合金的应用领域和应用范围。常用的连接方法主要有机械固定和焊接等方法,其中焊接方法因具有连接强度高、稳定性好和服役寿命长等优点被广泛应用。焊接中基于热源类型形成了多种焊接技术,各种焊接技术可获得相应的接头组织和性能以适用于不同要求。
本文系统地介绍了当前国内外关于硬质合金与钢焊接的最新研究进展,包括钎焊、扩散焊、电弧焊、高能束焊、复合热源焊、摩擦焊以及电阻焊,对比了这些焊接方法及其焊接工艺对接头力学性能和微观组织的影响。其中,钎焊属于非熔焊接,因具有工艺简单、成本低廉的特点被广泛应用,目前的研究着重于开发各种新型钎料以改善其润湿性,从而提高焊接接头强度;而电弧焊、高能束焊、复合热源焊等熔焊可在焊接界面处产生良好的冶金结合,实现较高强度的连接。然而,熔化焊在界面处不可避免地产生了具有典型特征的η相,由于其脆性而恶化了接头性能。因此,本文综述了各种焊接方法对η相的生成原因及抑制机制,着重介绍了电阻点焊中η相的形核机理和长大模型,最后对未来硬质合金与钢焊接的研究重点和发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈刚
邓人钦
薛伟
孙瑜蔓
田茂森
唐啸天
关键词:  硬质合金    焊接方法  接头性能  η相    
Abstract: The connection between cemented carbide and steel can realize the ideal combination of high hardness and high strength and toughness, thus greatly expanding the application field and application range of cemented carbide. The commonly used connection methods mainly include mechanical fixation and welding, among which the welding method is widely used because of its high connection strength, good stability and long service life. A variety of welding technologies are developed based on the type of heat source in welding, each of which can obtain the corresponding joint microstructure and properties to meet different requirements.
This paper systematically introduces the latest global research progress on the welding of cemented carbide to steel, including brazing, diffusion welding, arc welding, high energy beam welding, hybrid heat source welding, friction welding and resistance welding. The effects of these wel-ding methods and welding processes on the mechanical properties and microstructure of joints are compared. Among them, brazing is a kind of non-fusion welding and has found wide application because of its simple process and low cost. At present, the main research of brazing focuses on the development of various new solders to improve their wettability, so as to improve the strength of welded joints. Arc welding, high energy beam welding, hybrid heat source welding and other fusion welding can produce good metallurgical bonding at the welding interface and achieve high strength connection, yet almost inevitably induce the generation of typical η phase at the interface of fusion welding, which deteriorates the properties of the joint because of its brittleness. Therefore, this paper summarized the research reports on the formation and inhibition of η phase in various welding methods and welding processes, with emphasis on the nucleation mechanism and growth model of η phase in resistance spot welding. Finally, the future research focus and development direction of welding cemented carbide and steel are prospected as well.
Key words:  cemented carbide    steel    welding method    joint properties    η phase
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TG441  
基金资助: 国家自然科学基金青年基金(11902033)
通讯作者:  * chengang811@163.com   
作者简介:  陈刚,湖南大学教授、博士研究生导师。2005年6月获得湖南大学材料加工工程博士学位,先后主持或参与了国家“863”、国家科技攻关项目、国家自然科学基金项目、部省级重点项目等40余项。在国内外学术期刊上发表论文80余篇,授权国家发明专利10余项,主要研究方向包括:异种金属焊接、快速凝固与喷射沉积、粉末冶金及金属注射成形、高熵合金及其涂层等。
引用本文:    
陈刚, 邓人钦, 薛伟, 孙瑜蔓, 田茂森, 唐啸天. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 20120018-9.
CHEN Gang, DENG Renqin, XUE Wei, SUN Yuman, TIAN Maosen, TANG Xiaotian. Research Progress of Welding Between Cemented Carbide and Steel. Materials Reports, 2022, 36(22): 20120018-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120018  或          http://www.mater-rep.com/CN/Y2022/V36/I22/20120018
1 García J, Collado C V, Blomqvist A, et al. International Journal of Refractory Metals and Hard Materials, 2019, 80, 40.
2 Cruz D.C, Sordi V L, Ventura C E H.CIRP Journal of Manufacturing Science and Technology, 2022, 37, 613.
3 Xu P Q. Materials & Design, 2011, 32(1), 229.
4 Chen G Q, Zhang B G, Wu Z Z, et al. Cemented Carbide, 2012, 29(6), 6(in Chinese).
陈国庆, 张秉刚, 吴振中, 等. 硬质合金, 2012, 29(6), 6.
5 Chiu L H, Wang H F, Huang C P, et al.International Conference on Multifunctional Materials and Structures, 2008, 47(1), 682.
6 Ju J, Xue F, Zhou J, et al.Materials and Manufacturing Processes, 2016,31(8), 1052.
7 Zhang X.Journal of Materials Science & Technology,2018,34(7),1180.
8 Chen H, Feng K, Xiong J, et al.Journal of Alloys and Compounds, 2013, 557, 18.
9 Amelzadeh M, Mirsalehi S E.Journal of Manufacturing Processes, 2018, 36, 450.
10 Chen J, Liu X P, Liang H, et al. Welding Technology, 2011, 40(3), 50(in Chinese).
陈健, 刘雪飘, 梁欢, 等. 焊接技术, 2011, 40(3), 50.
11 Li Z R, Liu B, Fan J X, et al. Transactions of the China Welding Institution, 2010, 31(10), 97(in Chinese).
李卓然, 刘兵, 樊建新, 等. 焊接学报, 2010, 31(10), 97.
12 Lu Y, Wang H L, Zhou J J. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2007, 21(4), 76(in Chinese).
陆杨, 王海龙, 周基江. 江苏科技大学学报(自然科学版), 2007, 21(4), 76.
13 Lee W B,Kwon B D, Jung S B. Materials Science and Technology, 2004, 20(11), 1474.
14 Chen H, Feng K, Wei S, et al.International Journal of Refractory Metals & Hard Materials, 2012, 33, 70.
15 Yaoita S, Watanabe T, Sasaki T.Materials Research Innovations, 2013, 17, 142.
16 Cheniti B, Miroud D, Badji R, et al.International Journal of Refractory Metals and Hard Materials, 2017, 64, 210.
17 Jiang C, Chen H, Zhao X, et al.International Journal of Refractory Me-tals & Hard Materials, 2018, 70, 1.
18 Winardi Y, Triyono, Muhayat N, et al. IOP Conference Series: Materials Science and Engineering, 2018, 333(1), 012039.
19 Barrena M I, Salazar J M G D, Matesanz L.Materials & Design, 2010, 31(7), 3389.
20 Sheng G M, Huang J W, Qin B, et al.Journal of Materials Science, 2005, 40(24), 6385.
21 Klaasen H, Kuebarsepp J, Laansoo A, et al.International Journal of Refractory Metals & Hard Materials, 2010, 28(5), 580.
22 Guo Y, Wang Y, Gao B, et al.Ceramics International, 2016, 42(15), 16729.
23 Chen C H, Xia S, Shi Y L, et al. Chinese Journal of Rare Metals, 2018, 42(5),485(in Chinese).
陈春焕, 夏爽, 时彦龙, 等. 稀有金属, 2018, 42(5), 485.
24 Zhao X J, Wang H, Yang D X, et al.Cemented Carbide,2004, 21(2),94(in Chinese).
赵秀娟, 王浩, 杨德新, 等. 硬质合金, 2004, 21(2), 94.
25 Xia S. Study on preparation of gradient cemented carbide and its arc welding to steel 45. Master's Thesis, Dalian Jiaotong University, China, 2017(in Chinese).
夏爽, 梯度硬质合金制备及与45钢的电弧焊研究. 硕士学位论文, 大连交通大学, 2017.
26 Ma D. Study on microstructure and property of MIG welds between cemented carbide and steel. Master's Thesis, Shanghai University of Engineering Science, China, 2014(in Chinese).
马丁. 硬质合金与钢MIG焊组织及性能研究. 硕士学位论文, 上海工程技术大学, 2013.
27 Tian N L, Zhen Q G. Chinese Journal of Lasers, 1996, 23(4), 381(in Chinese).
田乃良, 郑启光. 中国激光, 1996, 23(4), 381.
28 Costa A P, Quintino L, Greitmann M.Journal of Materials Processing Technology, 2003, 141(2), 163.
29 Costa A, Miranda R M, Quintino L.Materials and Manufacturing Processes, 2006, 21(5), 459.
30 Chen G, Huang Y, Zhou M Z, et al. Journal of Hunan University(Natural Sciences), 2017, 44(12), 34(in Chinese).
陈刚, 黄宇, 周明哲, 等. 湖南大学学报(自然科学版), 2017, 44(12), 34.
31 Cao X L, Xu P Q, Cao Z Y, et al.Chinese Journal of Lasers,2015, 42(3), 78(in Chinese).
曹晓莲, 徐培全, 曹卓玥, 等. 中国激光, 2015, 42(3), 78.
32 Yu X Y, Zhou D R, Yao D J, et al.International Journal of Refractory Metals and Hard Materials, 2016, 56,76.
33 Ge T T, Zhang X D, Liu W J, et al. Applied Laser, 1999, 19(5), 282(in Chinese).
葛廷刚, 张旭东, 刘文今,等. 应用激光, 1999, 19(5), 282.
34 Zhao X J, Yang D X, Wang H, et al. Materials for Mechanical Enginee-ring, 2005, 29(5), 21(in Chinese).
赵秀娟, 杨德新, 王浩, 等. 机械工程材料, 2005, 29(5), 21.
35 Chen G Q, Zhang B G, Wu Z Z, et al. Transactions of the China Wel-ding Institution, 2013, 34(6), 9(in Chinese).
陈国庆, 张秉刚, 吴振中, 等. 焊接学报, 2013, 34(6), 9.
36 Chen G, Zhang B, Wu Z, et al.International Journal of Refractory Metals & Hard Materials, 2013, 40, 58.
37 Chen G, Shu X, Liu J, et al.Ceramics International,2019,45(6),7821.
38 Chen G, Shu X, Liu J, et al.Vacuum, 2018, 149, 96.
39 Ribic B, Rai R, Debroy T.Science and Technology of Welding and Joi-ning, 2008, 13(8), 683.
40 Xu P Q.Materials & Design, 2011, 32(1), 229.
41 Ma D, Yu Z S, Cao X L, et al. Hot Working Technology, 2013, 42(19), 144(in Chinese).
马丁, 于治水, 曹晓莲, 等. 热加工工艺, 2013, 42(19), 144.
42 Li Y, Zhu Z, He Y, et al.Journal of Materials Processing Technology, 2016, 238, 15.
43 Li G D, Li Z X, Zhang T L, et al.Materials for Mechanical Engineering, 2013, 37(1), 1(in Chinese).
李国栋, 栗卓新, 张天理, 等. 机械工程材料, 2013, 37(1), 1.
44 Avettand-Fenoel M N, Nagaoka T, Marinova M, et al.Journal of Manufacturing Processes, 2020, 58, 259.
45 Cheniti B, Miroud D, Badji R, et al.Materials Science and Engineering A, 2019, 758, 36.
46 Avettand-Fenoel M N, Nagaoka T, Fujii H, et al.Journal of Manufactu-ring Processes, 2019, 40, 1.
47 Leon M, Shin H S.Journal of Materials Processing Technology, 2022, 307, 117691.
48 Cao X, Zhou Z, Luo J, et al.Journal of Materials Processing Technology, 2019, 264, 486.
49 Zhai Q Y, Xu J F, Cai Z S.Transactions of the China Welding Institution,2007, 28(8), 13(in Chinese).
翟秋亚, 徐锦锋, 蔡再生. 焊接学报, 2007, 28(8), 13.
50 Maizza G, Pero R, De Marco F, et al.Materials, 2020, 13(11), 2657.
51 Fais A, Maizza G.Journal of Materials Processing Technology, 2008, 202(1-3), 70.
52 Maizza G, Cagliero R, Iacobone A, et al.Surface and Interface Analysis, 2016, 48(7), 538.
53 Chen G, Xue W, Jia Y, et al.Materials Science and Engineering A, 2020, 776, 139008.
54 Chen L, Guo Z, Zhang C, et al.Ceramics International, 2021, 47(18), 25634.
55 Liu S R.Cemented Carbide, 1997,14(4), 198(in Chinese).
刘寿荣. 硬质合金, 1997,14(4), 198.
56 Zhao X,Liu P,Chen C,et al.Materials Science Forum, 2011,675-677,901.
57 Liu D, Li L, Li F, et al.Surface & Coatings Technology, 2008, 202(9), 1771.
58 Markstrom A, Sundman B, Frisk K.Journal of Phase Equilibria and Diffusion, 2005, 26(2), 152.
59 Sugiyama I, Goto M, Taniuchi T, et al.Journal of Materials Science, 2011, 46(12), 4413.
60 Upadhyaya G S.Materials & Design, 2001, 22(6), 483.
61 Chen L, Yi D, Wang B, et al.Corrosion Science, 2015, 94, 1.
62 Lisovsky A F, Bondarenko N A, Davidenko S A.Journal of Superhard Materials, 2016, 38(6), 382.
63 Lee W B, Kwon B D, Jung S B.International Journal of Refractory Metals & Hard Materials, 2006, 24(3), 215.
64 Xiao Y H, Liu P W, Wang Z, et al.Journal of Materials Processing Technology, 2019, 267, 17.
65 Ma B, Wang X, Chen C, et al.Metals, 2019, 9(11), 161.
66 Amirnasiri A, Parvin N, Haghshenas M S.Journal of Manufacturing Processes, 2017, 28, 82.
67 Zhu L, Luo L, Luo J, et al.Surface & Coatings Technology, 2012, 206(8-9), 2521.
68 Sui Y, Luo H, Lv Y, et al.Welding in the World, 2016, 60(6), 1269.
69 Lu Y, Wang H L, Zhou J J. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2007, 21(4), 76(in Chinese).
陆杨, 王海龙, 周基江. 江苏科技大学学报(自然科学版), 2007, 21(4), 76.
[1] 张舒婷, 黄向玫, 赵栋烨, 洪志浩, 曾晓晓, 才来中. 含TiN阻氚过渡层新型第一壁的氘渗透实验研究[J]. 材料导报, 2022, 36(Z1): 22030154-5.
[2] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[3] 杨喜臻, 宋原吉, 于思荣, 王康, 王珺. 不锈钢基超疏水表面的研究现状及发展趋势[J]. 材料导报, 2022, 36(Z1): 21120203-9.
[4] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[5] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[6] 何翠竹. 控制棒驱动机构耐压壳钩爪段用马氏体不锈钢研究[J]. 材料导报, 2022, 36(Z1): 22040180-4.
[7] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[8] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[9] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[12] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[13] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[14] 秦芳诚, 亓海全, 孟征兵, 陈平, 黄玉鸿. 海洋工程高抗蚀筋材研究进展[J]. 材料导报, 2022, 36(6): 20060137-7.
[15] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed