Experimental Study on Fracture Properties of Wet Joint with UHPC Functional Gradient Under Acid Rain Corrosion
GUO Liujun1, WANG Kai2,*, WANG Jinyu2, HU Shimei2, YU Guoqing2
1 School of Civil Engineering, Central South University, Changsha 410075, China 2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
Abstract: Given the structural stress distribution and material manufacturing cost of the wet joint of a prefabricated bridge deck in an acid rain region, a wet joint of the prefabricated bridge deck with an ultra-high performance concrete (UHPC) functional gradient was designed by introducing the design concept of a functional gradient composite structure. Twenty groups of wet joint specimens were studied by the three-point bending fracture test. The effects of different thickness ratios of UHPC and acid rain corrosion time on the initial cracking load, peak load, elastic modulus, fracture toughness, and fracture energy of wet joint specimens were discussed. The results show that the initial cracking load and peak load increase at the initial stage of corrosion, and the initial cracking load will accelerate the deterioration with the degree of corrosion increasing. The elastic modulus, fracture toughness, and fracture energy of wet joint specimens first increased and then decreased with the increase of corrosion time. The use of UHPC material can effectively improve the fracture performance of wet joint specimens and delay their deterioration in acid rain environments. The fracture performance of the wet joint specimen increases the most when the thickness ratio of UHPC is 1/3, indicating that the utilization efficiency of UHPC is the highest.
1 Zhang Y T, Tian F. Bridge Construction, 2018, 48(5), 48 (in Chinese). 张永涛, 田飞. 桥梁建设, 2018, 48(5), 48. 2 Chen W Q, Liu Y J, Zhang J G, et al. Highways & Transportation in Inner Mongolia, 2018(1), 6 (in Chinese). 陈卫全, 刘永健, 张俊光, 等. 内蒙古公路与运输, 2018(1), 6. 3 Chen B. The research on flexural performance of prefabricated NSC components with UHPC wet joints. Master's Thesis, Hunan University, China, 2018 (in Chinese). 陈贝. 预制NSC构件的UHPC湿接缝受弯性能研究. 硕士学位论文, 湖南大学, 2018. 4 Zhang Y, Chen B. Highway Engineering, 2018, 43(6), 1 (in Chinese). 张阳, 陈贝. 公路工程, 2018, 43(6), 1. 5 Billington S L, Breen J E. Journal of Bridge Engineering, 2000, 5(4), 344. 6 Billington S L, Barnes R W. Journal of Bridge Engineering, 2001, 6(2), 87. 7 Zhang C, Shao X D, Zhang Y. China Civil Engineering Journal, 2015, 48(4), 52 (in Chinese). 张策, 邵旭东, 张阳. 土木工程学报, 2015, 48(4), 52. 8 Pan W H, Fan J S, Nie J G, et al. Journal of Bridge Engineering, 2016, 21(10), 04016064. 9 Gao L G, Wang M, Wang K N. Bridge Constructioni, 2022, 52(2), 82 (in Chinese). 高立强, 王敏, 王康宁. 桥梁建设, 2022, 52(2), 82. 10 Shi C, Wu Z, Xiao J, et al. Construction and Building Materials, 2015, 101, 741. 11 Graybeal B, Tanesi J. Journal of Materials in Civil Engineering, 2007, 19(10), 848. 12 Shao X D, Qiu M H, Yan B F, et al. Materials Reports, 2017, 31(23), 33 (in Chinese). 邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33. 13 Peng K, Yan B. Magazine of Concrete Research, 2022, 74(2), 70. 14 Arafa A, Farghaly A S, Ahmed E A, et al. Journal of Bridge Enginee-ring, 2016, 21(11), 05016006. 15 Hu Z J, Yin B S, Yu W S. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(6), 29 (in Chinese). 胡志坚, 尹炳森, 俞文生. 中山大学学报(自然科学版), 2021, 60(6), 29. 16 Xia Q, Sun Y, Wang D, et al. China Concrete and Cement Products, 2020, 295(11), 10 (in Chinese). 夏强, 孙宇, 王冬, 等. 混凝土与水泥制品, 2020, 295(11), 10. 17 Ge W J, Ashour A F, Yu J M, et al. Journal of Composites for Construction, 2019, 23(1), 04018069. 18 Zhang J, Wang Z, Ju X, et al. Engineering Fracture Mechanics, 2014, 131, 419. 19 Gao Y L, Ma B G. Journal of Railway Science and Engineering, 2009, 6(3), 8 (in Chinese). 高英力, 马保国. 铁道科学与工程学报, 2009, 6(3), 8. 20 Mei R S, Wang K, Yu G Q, et al. Journal of East China Jiaotong University, 2022, 39(1), 1 (in Chinese). 梅若诗, 王凯, 余国庆, 等. 华东交通大学学报, 2022, 39(1), 1. 21 Niu D T, Zhou H S, Niu J G. Bulletin of Chinese Ceramic Society, 2009, 28(3), 411 (in Chinese). 牛获涛, 周浩爽, 牛建刚. 硅酸盐通报, 2009, 28(3), 411. 22 Zhang Y Z, Zhao Y H, Fan Y F. Engineering Mechanics, 2011, 28(2), 175 (in Chinese). 张英姿, 赵颖华, 范颖芳. 工程力学, 2011, 28(2), 175. 23 Zhu Z. Mathematics and Mechanics of Solids, 2009, 14(8), 727. 24 Wang Z, Zhu Z, Sun X, et al. Engineering Failure Analysis, 2017, 77, 76. 25 Reis J. Construction & Building Materials, 2010, 24(9), 1708. 26 Xie S, Qi L, Zhou D. Atmospheric Environment, 2004, 38(27), 4457. 27 Gong X, Chen F, Zuo J. Journal of Green Science and Technology, 2017(20), 65 (in Chinese). 龚娴, 陈芬, 左嘉. 绿色科技, 2017(20), 65. 28 Wu B, Liu W L, Wan Y F, et al. Pearl River, 2020, 41(6), 99 (in Chinese). 吴滨, 刘卫林, 万一帆, 等. 人民珠江, 2020, 41(6), 99. 29 Rong Z, Sun W, Xiao H, et al. Cement and Concrete Composites, 2015, 56, 25. 30 Tayeh B A, Abu B B H, Megat J M A, et al. Journal of Adhesion Science and Technology, 2014, 28(18), 1846. 31 Zhou Y, Huang J, Yang X, et al. Construction and Building Materials, 2021, 285, 122862. 32 Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook, American Society of Testing Materials Press, UK, 2000, pp. 59. 33 Hamrat M, Boulekbache B, Chemrouk M, et al. Construction and Buil-ding Materials, 2016, 106, 678. 34 Zhu Z H, Feng Q S, Xiao Q Q, et al. China Civil Engineering Journal, 2021, 54(6), 99 (in Chinese). 朱志辉, 冯乾朔, 肖权清, 等. 土木工程学报, 2021, 54(6), 99. 35 Xu S, Reinhardt H W. International Journal of Fracture, 2000, 104(2), 181. 36 National Development and Reform Commission. Norm for fracture test of hydraulic concrete DL/T 5332-2005, China Power Press, China, 2002, pp. 15(in Chinese). 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程 DL/T 5332-2005, 中国电力出版社, 2002, pp. 15. 37 Zhou C L, Zhu Z M, Zhu A J, et al. Advanced Engineering Sciences, 2019, 51(1), 144 (in Chinese). 周昌林, 朱哲明, 朱爱军, 等. 工程科学与技术, 2019, 51(1), 144. 38 Recommendation R D. Materials and Structures, 1985, 18(106), 285.