Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22010230-9    https://doi.org/10.11896/cldb.22010230
  无机非金属及其复合材料 |
钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究
袁明1, 朱海乐1, 颜东煌1,*, 袁晟1, 黄练1, 刘昀1,2
1 长沙理工大学土木工程学院,长沙 410114
2 湖南交通职业技术学院路桥工程学院,长沙 410132
Experimental Study on the Effect of Steel Fiber Embedment Depth and Type on the Interfacial Bonding Properties of Steel Fiber-UHPC Matrix
YUAN Ming1, ZHU Haile1, YAN Donghuang1,*, YUAN Sheng1, HUANG Lian1, LIU Yun1,2
1 School of Civil Engineering, Changsha University of Science and Technology,Changsha 410114,China
2 School of Road and Bridge Engineering, Hunan Communication Polytechnic,Changsha 410132,China
下载:  全 文 ( PDF ) ( 8991KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究钢纤维-超高性能混凝土(UHPC)基体界面粘结性能的影响因素,进一步阐明不同纤维类型、埋深下双根钢纤维、UHPC基体粘结性能及界面破坏形式,本工作通过双丝拉拔试验对不同埋深的高强钢纤维在UHPC基体中的拔出行为进行研究,以了解纤维的拉拔性能和UHPC的界面粘结性能。纤维拉拔试验以纤维类型及埋深为变量,对两根钢纤维在不同纤维埋深下的评价参数进行了表征和分析,并观察了纤维拔出后的微观形貌和UHPC基体的隧洞形貌。试验结果表明:端钩型纤维的拉拔性能优于直圆型纤维;利用SEM观察到拔出的直圆型纤维表面粘附有絮状或簇状的微小UHPC基体颗粒,并有不同程度的擦伤或长而宽的刮痕,在UHPC基体隧洞中发现了微裂纹,且在纤维拉拔过程中拔出口附近的基体会发生剥落。同时,钢纤维的拉拔性能与纤维埋深有关,但埋深对端钩型纤维影响更大,拉拔荷载峰值达到402.66 MPa,材料的强度利用率为94.9%;纤维的破坏模式也与纤维类型有关,端钩型纤维比直圆型纤维更易发生断裂。本研究可为进一步改善钢纤维增强超高性能混凝土的力学性能提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁明
朱海乐
颜东煌
袁晟
黄练
刘昀
关键词:  桥梁工程  超高性能混凝土(UHPC)  双丝拉拔试验  钢纤维  粘结性能  纤维埋深    
Abstract: In order to study the influence factors of interfacial bond performance between steel fiber and ultra-high performance concrete (UHPC) matrix, to further clarify the failure mode of the bonding interface between two steel fibers and UHPC matrix under different fiber types and embedment depths. Through the double fibers pull-out test, the pull-out behavior of high-strength steel fibers with different buried depths in UHPC matrix was studied to understand the pull-out performance of fibers and the interfacial bonding performance of UHPC. The fiber pull-out test used fiber type and embedment depth as variables to characterize and analyze the evaluation parameters of two steel fibers under different fiber embedment depths, and observed the microscopic morphology of the fibers after pulling out and the tunnel shape of the UHPC matrix.
The test results show that the pullout performance of end-hooked fiber is better than that of straight circular fiber; through SEM, it observes that the surface of the pulled straight circular fiber is adhered by floc or cluster of micro UHPC matrix particles, leaving varying degrees of scratches or long and wide scratches. There are microcracks in the UHPC matrix tunnel, and the matrix near the exit of the tunnel is peeled off during the fiber pulled out process. At the same time, the pullout performance of steel fiber was related to the fiber embedment depth, but the embedment depth had a greater impact on the end-hooked fiber, the peak pull-out load reached 402.66 MPa, and the strength utilization rate of the material was 94.9%; the failure mode of fiber was also related to the fiber type. The end-hooked fiber is more prone to fracture than the straight circular fiber. The research of this paper can provide a reference for further improving the mechanical properties of steel fiber reinforced ultra-high performance concrete.
Key words:  bridge engineering    ultra high performance concrete (UHPC)    double fibers pull-out test    steel fiber    bonding properties    fiber embedment depth
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  U444  
基金资助: 国家自然科学基金项目(52078054;52278141);湖南省交通科技项目(201932);湖南省自然科学基金(2021jj30730);湖南省研究生科研创新项目(CX20200832;CX20190650)
通讯作者:  *颜东煌,1982年于湖南大学本科毕业,获工学学士学位;1986年于长安大学硕士研究生毕业,获工学硕士学位;2001年于湖南大学博士研究生毕业,获工学博士学位。现为长沙理工大学土木工程学院教授,博士研究生导师,主要研究方向有:大跨度桥梁的施工控制理论与应用,斜拉桥设计理论与合理设计状态研究,大型结构模型试验,混凝土箱梁桥的抗裂性研究等。发表SCI论文4篇,国内权威刊物论文10余篇,主编或参编专著、教材3本,授权发明专利4项,主持国家自然科学基金项目4项,获国家科技进步奖4项。入选 “新世纪百千万人才工程”国家级人选,交通部首批新世纪十百千人才工程第一层次人选,2000年获国务院政府特殊津贴。yandonghuang@126.com   
作者简介:  袁明,2002年于长沙理工大学本科毕业,获工学学士学位;2005年于长沙理工大学硕士研究生毕业,获工学硕士学位;2009年于长沙理工大学博士研究生毕业,获工学博士学位。现为长沙理工大学土木工程学院副教授,硕士研究生导师,主要研究方向有:桥梁非线性与结构振动,桥梁工程新材料与新工艺,结构智能监测。发表SCI/EI论文10余篇,授权发明专利9项,出版学术专著和教材2部。
引用本文:    
袁明, 朱海乐, 颜东煌, 袁晟, 黄练, 刘昀. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 22010230-9.
YUAN Ming, ZHU Haile, YAN Donghuang, YUAN Sheng, HUANG Lian, LIU Yun. Experimental Study on the Effect of Steel Fiber Embedment Depth and Type on the Interfacial Bonding Properties of Steel Fiber-UHPC Matrix. Materials Reports, 2023, 37(16): 22010230-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010230  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22010230
1 Yan X , Gao Y , Luo Y , et al. IOP Conference Series: Materials Science and Engineering, 2021, 1167(1),1.
2 Won J P , Hong B T , Lee S J , et al. Composite Structures, 2013, 102,101.
3 Tuyan M, Yazici H. Construction & Building Materials, 2012, 35,571.
4 Tarifa M, Poveda E, Cunha V , et al. International Journal of Fracture, 2019, 223(12),109.
5 Kanakubo T, Echizen S, Wang J , et al. Materials, 2020, 13(7),1746.
6 Kim B J, Yi C, Ahn Y R. Construction and Building Materials, 2017, 143,83.
7 Beglarigale A, Yazici H. Construction & Building Materials, 2015, 75,255.
8 Hong L, Chen Y D, Li T D , et al. Construction and Building Materials, 2020, 232,117235.
9 Tai Y S, El-Tawil S, Chung T H, et al. Cement & Concrete Research, 2016, 89,1.
10 Wille K, Naaman A E. ACI Materials Journal,2013,110(4),451.
11 Zhao Yihe, Sun Zhenping, Mu Fanyuan, et al. Journal of Building Materials, 2021,24(2),276(in Chinese).
赵一鹤, 孙振平, 穆帆远,等.建筑材料学报, 2021,24(2),276.
12 Edmunds Zīle, Olga Zīle. Cement and Concrete Research, 2013,44,18.
13 Wei Bingdeng. The research on fiber-matrix interfacial bond properties of reactive powder concrete. Master's Thesis, Changsha University of Science and Technology, China, 2015(in Chinese).
韦炳灯. 钢纤维与活性粉末混凝土基体界面粘结性能研究.硕士学位论文,长沙理工大学, 2015.
14 Xie Ruifeng, Wu Yunfei, Tang Baixiao. Chinese Journal of Materials Research, 2021,35(6),433(in Chinese).
谢瑞峰, 仵云飞, 唐百晓.材料研究学报, 2021, 35(6),433.
15 Liu Hao, Zeng Xiangrong, Zhang Yafang, et al. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2018,57(3),143(in Chinese).
刘浩, 曾向荣, 张亚芳,等.中山大学学报:自然科学版, 2018, 57(3),143.
16 Zhang Yafang, Guo Zhongxiang, Liu Hao, et al. Journal of Shenzhen University(Science and engineering), 2020,37(4),381(in Chinese).
张亚芳, 郭中祥, 刘浩,等.深圳大学学报:理工版, 2020, 37(4),381.
17 Yuan Ming, Liang En, Yan Donghuang, et al. Journal of Chang'an University(Natural Science Edition), 2020, 40(6),57(in Chinese).
袁明, 梁恩, 颜东煌,等. 长安大学学报:自然科学版, 2020, 40(6),57.
18 Afnor N F. National addition to eurocode 2-design of concrete structures: specific rules for ultra-high performance fibre reinforced concrete (UHPFRC), French Standard Institute, France, 2016.
19 Dalian University of Technology. Standard test methods for fiber reinforced concrete. China Planning Press, China, 2010(in Chinese).
大连理工大学.纤维混凝土试验方法标准. 中国计划出版社, 2010.
20 Nie Jie, Li Chuanxi, Qian Guoping, et al. Materials Reports, 2021, 35(4),4042(in Chinese).
聂洁, 李传习, 钱国平,等.材料导报, 2021, 35(4),4042.
21 Wille K, Naaman A E. ACI Materials Journal, 2012, 109(4),479.
22 Yoo D Y, Park J J, Kim S W. Composite Structures, 2017, 174,263.
23 Huang Jun, Jiang Hongdao. Chinese Journal of Applied Mechanics, 2006(3),473(in Chinese).
黄俊, 姜弘道.应用力学学报, 2006(3),473.
[1] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[2] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[3] 张冲, 毕梦迪, 刘同军, 宁靖华, 段广彬, 张秀芝, 慕儒. 砂浆流变性能和外界磁场强度对钢纤维分布特征的影响[J]. 材料导报, 2022, 36(24): 21110154-6.
[4] 马兴林, 杨俊, 周建庭, 王劼耘, 张中亚, 苏昊, 王宗山. UHPC与石材的粘结界面抗剪性能试验研究[J]. 材料导报, 2022, 36(24): 21070133-7.
[5] 苏昊, 杨俊, 周建庭, 王劼耘, 王宗山, 马兴林. 基于DIC的UHPC加固锈蚀钢筋混凝土柱轴心受压性能研究[J]. 材料导报, 2021, 35(z2): 194-199.
[6] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[7] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[8] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[9] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[10] 周建庭, 胡天祥, 杨俊, 周璐, 孙航行. 键槽构造UHPC-NC界面黏结性能试验研究[J]. 材料导报, 2021, 35(16): 16050-16057.
[11] 邓宗才, 赵连志, 连怡红. 膨胀剂、减缩剂对超高性能混凝土圆环约束收缩性能的影响[J]. 材料导报, 2021, 35(12): 12070-12074.
[12] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[13] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[14] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[15] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed