Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21110154-6    https://doi.org/10.11896/cldb.21110154
  无机非金属及其复合材料 |
砂浆流变性能和外界磁场强度对钢纤维分布特征的影响
张冲1, 毕梦迪2, 刘同军3, 宁靖华3, 段广彬1, 张秀芝1,*, 慕儒2,*
1 济南大学材料科学与工程学院,济南 250022
2 河北工业大学土木与交通学院,天津 300401
3 中国电建集团山东电力管道工程有限公司,济南 250117
Effects of Rheological Properties of Mortar and Magnetic Field Strength on Steel Fiber Distribution Characteristics
ZHANG Chong1, BI Mengdi2, LIU Tongjun3, NING Jinghua3, DUAN Guangbin1, ZHANG Xiuzhi1,*, MU Ru2,*
1 School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
2 School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
3 Power China Shandong Pipeline Engineering Corporation Limited, Jinan 250117, China
下载:  全 文 ( PDF ) ( 8257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过改变减水剂掺量来调整砂浆屈服应力和塑性粘度,分析了屈服应力、塑性粘度和外界磁场强度对钢纤维分散性和方向性的影响。结果表明:当屈服应力小于16.5 Pa时,钢纤维在浆体流动剪切和自身重力作用下可以克服屈服应力沿流动方向旋转定向,随着流动距离增大,方向系数逐渐增大,但当流动距离大于0.4 m后,方向系数趋于稳定;当屈服应力小于2.5 Pa、塑性粘度小于10 Pa·s时,钢纤维发生沉降。此外,提高外界磁场强度可以使钢纤维方向系数明显增大,减水剂掺量一定时,与不加磁场相比,通过6.39 mT磁场的水泥砂浆钢纤维方向系数可增大18%~40%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冲
毕梦迪
刘同军
宁靖华
段广彬
张秀芝
慕儒
关键词:  钢纤维  屈服应力  塑性粘度  磁感应强度  方向系数    
Abstract: To adjust the yield stress and plastic viscosity of mortar, the amount of superplasticizer was changed. Effects of yield stress, plastic viscosity and magnetic field strength on the dispersion and directivity of steel fibers were analyzed. The results showed that when the yield stress was less than 16.5 Pa, steel fiber could overcome the yield stress and rotate and orient along the flow direction under the action of mortar flow shear and self-gravity. With the increase of flow distance, orientation coefficient gradually increased, but when the flow distance was greater than 0.4 m, orientation coefficient tended to be stable. When yield stress was less than 2.5 Pa and plastic viscosity was less than 10 Pa·s, the steel fiber would settle. In addition, increasing the intensity of the external magnetic field could significantly improve orientation coefficient of steel fiber. When the content of the superplasticizer was certain, orientation coefficient of steel fiber of cement mortar passing through a 6.39 mT magnetic field was increased by 18%—40% compared with that without a magnetic field.
Key words:  steel fiber    yield stress    plastic viscosity    magnetic induction intensity    orientation coefficient
发布日期:  2023-01-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178211;51878239)
通讯作者:  mse_zhangxz@ujn.edu.cn;ru_mu@hotmail.com   
作者简介:  张冲,现为济南大学材料科学与工程学院硕士研究生,在张秀芝教授的指导下进行研究。目前主要研究领域为钢纤维增强水泥基复合材料。
张秀芝,济南大学材料科学与工程学院教授、博士研究生导师。1997年山东建筑材料学院高分子材料专业本科毕业,2004年南京工业大学应用化学专业毕业,2010年东南大学材料学专业博士毕业。目前主要从事高性能水泥基材料、固体废弃物建材资源化利用等方面的研究工作,以第一和通讯作者在国内外学术期刊发表论文50余篇,其中SCI、EI收录30余篇。
慕儒,河北工业大学教授级高工、博士研究生导师。1993年西北农业大学水利与建筑工程专业本科毕业,1996年甘肃工业大学结构工程专业硕士毕业,2000年东南大学结构工程专业博士毕业。目前主要从事纤维增强水泥基复合材料、混凝土耐久性、高性能混凝土等方面的研究工作。在国内外学术期刊发表论文80余篇,其中SCI、EI检索40余篇。
引用本文:    
张冲, 毕梦迪, 刘同军, 宁靖华, 段广彬, 张秀芝, 慕儒. 砂浆流变性能和外界磁场强度对钢纤维分布特征的影响[J]. 材料导报, 2022, 36(24): 21110154-6.
ZHANG Chong, BI Mengdi, LIU Tongjun, NING Jinghua, DUAN Guangbin, ZHANG Xiuzhi, MU Ru. Effects of Rheological Properties of Mortar and Magnetic Field Strength on Steel Fiber Distribution Characteristics. Materials Reports, 2022, 36(24): 21110154-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110154  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21110154
1 Zhang Y S, Zhang W H, Chen Z Y. Materials Reports A:Review Papers, 2017, 31(12), 1 (in Chinese).
张云升, 张文华, 陈振宇. 材料导报:综述篇, 2017, 31(12), 1.
2 Schleiting M, Wetzel A, KrooΒ P, et al. Cement and Concrete Research, 2020, 130, 105993.
3 Zhang T Y, Li Q B, Wang Z L, et al. Journal of the Chinese Ceramic Society. 2012, 40(5), 638 (in Chinese).
张廷毅, 李庆斌, 汪自力, 等. 硅酸盐学报, 2012, 40(5), 638.
4 Arunothayan A R, Nematollahi B, Ranade R, et al. Cement and Concrete Research, 2021, 143, 106384.
5 Raju R A, Lim S, Akiyama M, et al. Construction and Building Materials, 2020, 262, 119963.
6 Huang H H, Gao X J, Khayat K H. Cement and Concrete Composites, 2021, 121, 104108.
7 Zhao J, Liao L, Zhang F, et al. Journal of Building Materials, 2020, 23(4), 838 (in Chinese).
赵健, 廖霖, 张帆, 等. 建筑材料学报, 2020, 23(4), 838.
8 Wang Z W, Zhou H F, Xie Z L. Materials Reports, 2021, 35(12), 12214 (in Chinese).
王哲伟, 周华飞, 谢子令. 材料导报, 2021, 35(12), 12214.
9 Zhang X Z, Bi M D, Liu T J, et al. Journal of the Chinese Ceramic Society, 2021, 49(8), 1732 (in Chinese).
张秀芝, 毕梦迪, 刘同军, 等. 硅酸盐学报, 2021, 49(8), 1732.
10 Trabucchi I, Tiberti G, Conforti A, et al. Construction and Building Materials, 2021, 307, 124834.
11 Gou H X, Zhu H B, Zhou H Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1756 (in Chinese).
苟鸿翔, 朱洪波, 周海云, 等. 硅酸盐学报, 2020, 48(11), 1756.
12 Huang H H, Gao X J, Teng L. Construction and Building Materials, 2021, 296, 123741.
13 Mu R, Qiu X, Zhao Q M, et al. Journal of the Chinese Ceramic Society. 2015, 18(2), 208 (in Chinese).
慕儒, 邱欣, 赵全明, 等. 建筑材料学报, 2015, 18(2), 208.
14 Mu R, Li H, Wang X W, et al. Journal of the Chinese Ceramic Society. 2015, 18(3), 387 (in Chinese).
慕儒, 李辉, 王晓伟, 等. 建筑材料学报, 2015, 18(3), 387.
15 Mu R, Wang C, Li H, et al. Journal of the Chinese Ceramic Society. 2016, 19(1), 78 (in Chinese).
慕儒, 王成, 李辉, 等. 建筑材料学报, 2016, 19(1), 78.
16 Huang H H, Gao X J, Li L S, et al. Construction and Building Materials, 2018, 188, 709.
17 Joye D D. Journal of Colloid and Interface Science, 2003, 267(1), 204.
18 Teng L, Meng W N, Khayat K H. Cement and Concrete Research, 2020, 138, 106222.
19 Lin J J. Investigation on orientation control and enhancement effect of steel fibres in cenmentitious materials. Ph. D. Thesis, Hebei University of Technology, China, 2015 (in Chinese).
林建军. 水泥基材料中钢纤维的方向控制及增强效应研究. 博士学位论文, 河北工业大学, 2015.
20 Alberti M G, Enfedaque A, Gálvez J C. Construction and Building Materials, 2019, 219, 144.
21 Abdelrazik A M, Khayat K H. Construction and Building Materials, 2020, 230, 116852.
22 Ozyurt N, Mason T O, Shah S P. Cement and Concrete Composites, 2007, 29(2), 70.
23 Wang R, Gao X J, Huang H H, et al. Construction and Building Materials, 2017, 144, 65.
24 Pae J, Kang S H, Lee N, et al. Construction and Building Materials, 2021, 303, 124515.
25 Raju R A, Lim S, Akiyama M, et al. Construction and Building Materials, 2020, 262, 119963.
26 Villar V P, Medina N F, Hernández-Olivares F. Construction and Buil-ding Materials, 2019, 201, 340.
[1] 伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
[2] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[3] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[4] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[5] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[6] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[7] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[8] 杜丰音, 金祖权, 于泳. 超高强水泥基材料的力学及耐久性能*[J]. CLDB, 2017, 31(23): 44-51.
[9] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[10] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[11] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[12] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[13] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[14] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[15] 李季, 石少卿, 何秋霖, 王起帆. 钢管钢纤维高强混凝土抗冲击压缩性能的试验研究与数值模拟*[J]. CLDB, 2017, 31(23): 125-131.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed