Please wait a minute...
材料导报  2021, Vol. 35 Issue (22): 22051-22056    https://doi.org/10.11896/cldb.20090034
  无机非金属及其复合材料 |
不同加载速率下高性能水泥基复合材料断裂性能研究
宣卫红1, 徐文磊2, 陈育志1, 陈徐东2, 程熙媛2
1 金陵科技学院建筑工程学院,南京 211169
2 河海大学土木与交通学院,南京 210098
Study on Fracture Properties of High-performance Cement-based Composites Under Different Loading Rates
XUAN Weihong1, XU Wenlei2, CHEN Yuzhi1, CHEN Xudong2, CHENG Xiyuan2
1 School of Architectural Engineering, Jinling Institute of Technology, Nanjing 211169, China
2 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
下载:  全 文 ( PDF ) ( 3996KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究加载速率对高性能水泥基复合材料(High-performance cement-based composites,HPCC)断裂性能的影响,本研究对带预制裂缝的HPCC矩形梁进行了三点弯曲测试。以裂缝嘴张开位移(Crack mouth opening displacement,CMOD)为加载控制参数,加载速率分别为0.001 mm/s、0.01 mm/s和0.1 mm/s,试件内钢纤维体积掺量分别为0%和2%(均为质量分数)。基于荷载-裂缝嘴张开位移(P-CMOD)曲线分析了第一裂纹应力、弹性模量、弯曲强度、失稳韧度以及断裂能等一系列断裂特征参数随加载速率的变化规律。试验结果表明:(i)第一裂纹应力和弹性模量几乎不受钢纤维含量和加载速率的影响;(ii)HPCC弯曲强度与应变率比呈对数关系,且含钢纤维HPCC的弯曲强度率效应更明显;(iii)含钢纤维HPCC的失稳韧度和断裂能有很大程度的提升,但其对加载速率的敏感性较低。掺钢纤维能够有效提高HPCC材料抵抗冲击荷载的能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宣卫红
徐文磊
陈育志
陈徐东
程熙媛
关键词:  高性能水泥基复合材料(HPCC)  钢纤维  断裂  加载速率  P-CMOD    
Abstract: To study the effect of loading rate on the fracture properties of high-performance cement-based composites (HPCC), three-point bending tests were carried out on HPCC using notched rectangular beams. The crack mouth opening displacement (CMOD) was used as the loa-ding control parameter. The loading rates were 0.001 mm/s, 0.01 mm/s and 0.1 mm/s respectively, and the volume fraction of steel fiber was 0% and 2%.A series of fracture characteristic parameters such as first crack stress, elastic modulus, bending strength, unstable fracture toughness and fracture energy were analyzed based on the P-CMOD curves. The experiment results show that: (i) the first crack stress and elastic modulus are almost independent of the steel fiber content and loading rate; (ii) the bending strength of HPCC is logarithmically related to the strain rate ratio, and the bending strength of HPCC with steel fiber is more sensitive to the loading rate; (iii) the unstable fracture toughness and fracture energy of HPCC with steel fiber are greatly improved, but the sensitivity to loading rate is relatively low. Steel fiber can effectively improve the ability of HPCC material to resist impact load.
Key words:  high-performance cement-based composites (HPCC)    steel fiber    fracture    loading rate    P-CMOD
出版日期:  2021-11-25      发布日期:  2021-12-13
ZTFLH:  TU528.572  
基金资助: 江苏省自然科学基金(BK20181114)
通讯作者:  xwh@jit.edu.cn   
作者简介:  宣卫红,金陵科技学院建筑工程学院院长,教授。2010年12月毕业于河海大学结构工程专业,博士学位。主要从事纤维水泥基复合材料力学性能及工程应用研究。在国内外重要期刊发表论文20多篇,获专利授权20余项。
引用本文:    
宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
XUAN Weihong, XU Wenlei, CHEN Yuzhi, CHEN Xudong, CHENG Xiyuan. Study on Fracture Properties of High-performance Cement-based Composites Under Different Loading Rates. Materials Reports, 2021, 35(22): 22051-22056.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090034  或          http://www.mater-rep.com/CN/Y2021/V35/I22/22051
1 Du F Y, Jin Z Q, Yu Y.Materials Reports B: Research Papers, 2017, 31(12), 44(in Chinese).
杜丰音, 金祖权, 于泳. 材料导报:研究篇, 2017, 31(12), 44.
2 Niu J G, Zuo F L, Wang J L, et al. Journal of Building Materials, 2018, 21(2), 235(in Chinese).
牛建刚, 左付亮, 王佳雷, 等. 建筑材料学报, 2018, 21(2), 235.
3 Banthia N, Majdzadeh F, Wu J, et al. Cement and Concrete Composites, 2014, 48, 91.
4 Wu L M, Shi C J, Zhang Z H, et al. Materials Reports B: Research Papers, 2017, 31(12), 58(in Chinese).
吴林妹, 史才军, 张祖华, 等. 材料导报:研究篇,2017,31(12),58.
5 Yang J H, Li X Y, Ye Y Q, et al. Journal of Vibration and Shock, 2020, 39(2), 148(in Chinese).
杨健辉, 李潇雅, 叶亚齐, 等. 振动与冲击, 2020, 39(2),148.
6 Zhang L, Ren X J, Hao L. Acta Armamentarii, 2014, 35(S2), 275(in Chinese).
张磊, 任新见, 郝龙. 兵工学报, 2014, 35(S2), 275.
7 Zhang W H, Chen Z Y. Materials Reports B: Research Papers, 2017, 31(12), 103(in Chinese).
张文华, 陈振宇. 材料导报:研究篇, 2017, 31(12), 103.
8 Pan H M, Ma Y C. Journal of Building Materials, 2017, 20(6), 956(in Chinese).
潘慧敏, 马云朝. 建筑材料学报, 2017, 20(6), 956.
9 Xu M, Hallinan B, Wille K.Cement and Concrete Composites, 2016, 70, 98.
10 Jin L, Zhang R, Tian Y, et al. Construction and Building Materials, 2018, 178, 102.
11 Wu P T, Wu C Q, Liu Z X, et al. Science Sinica (Physica, Mechanica & Astronomica), 2020(50), 024614(in Chinese).
仵鹏涛, 吴成清, 刘中宪,等. 中国科学: 物理学 力学 天文学, 2020(50), 024614.
12 Zhang X X, Ruiz G, Elazim A M A.International Journal of Impact Engineering, 2015, 76, 60.
13 中国国家标准化管理委员会. 高强高性能混凝土用矿物外加剂: GB/T 18736-2017,中国标准出版社,2017.
14 Wille K, Naaman A E.ACI Materials Journal, 2012, 109(4), 479.
15 Wille K, Naaman A E.ACI Materials Journal, 2013, 110(4), 451.
16 European Committee for Standardization. EN 14651:2005+A1:2007.
17 Rilem T C. Materials and Structures, 2002, 35(9), 579.
18 Bencardino F, Rizzuti L, Spadea G, et al. Composites Part B: Enginee-ring, 2013, 46, 31.
19 Almusallam T, Ibrahim S M, Al-Salloum Y, et al. Cement and Concrete Composites, 2016, 74, 201.
20 Ren G M, Wu H, Fang Q, et al. Construction and Building Materials, 2018, 163, 826.
21 Shah S P.Materials and Structures, 1990, 23(6), 457.
22 Chen C, Fan X, Chen X.Construction and Building Materials, 2020, 237, 117472.
23 Xu M, Hallinan B, Wille K.Cement and Concrete Composites, 2016, 70, 98.
24 Xu S, Reinhardt H W.International Journal of Fracture, 1999, 98(2), 111.
25 中华人民共和国国家发展和改革委员会. 水工混凝土断裂试验规程: DL/T 5332-2005,中国电力出版社,2009.
26 Japan Concrete Institute. JCI-S-001-2003 method of test for fracture energy of concrete by use of notched beam. Japan Concrete Institute, 2003.
27 In ternational Federation for Structural Concrete. Fib model code for concrete structures 2010. Berlin, Gemany: Ernst 8 sohn, 2013.
28 Tran N T, Tran T K, Jeon J K, et al. Cement and Concrete Research, 2016, 79, 169.
[1] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[2] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[3] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[4] 聂洁, 李传习, 钱国平, 潘仁胜, 裴必达, 邓帅. 钢纤维形状与掺量对UHPC施工及力学特性的影响[J]. 材料导报, 2021, 35(4): 4042-4052.
[5] 周圣雄, 王威娜, 秦煜, 刘佳亮. 基于声发射特征参数的玻纤格栅复合梁阻裂机理表征[J]. 材料导报, 2021, 35(22): 22033-22038.
[6] 徐善华, 赵晓蒙, 张海江, 张宗星, 王亮. 锈损冷弯薄壁钢板的断裂机制与断裂模型[J]. 材料导报, 2021, 35(14): 14130-14135.
[7] 王哲伟, 周华飞, 谢子令. 定向钢纤维增强地质聚合物弯曲破坏的声发射特性[J]. 材料导报, 2021, 35(12): 12214-12219.
[8] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[9] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[10] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[11] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[12] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[13] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[14] 王向杰, 冯蕾, 武靖亭, 肖新华, 苏蓓蓓. 搅拌摩擦焊接ZK60镁合金弯曲性能与断裂行为研究[J]. 材料导报, 2020, 34(4): 4083-4086.
[15] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed