Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 109-114    https://doi.org/10.11896/j.issn.1005-023X.2017.023.015
  专题栏目:超高性能混凝土及其工程应用 |
粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*
张丽辉1, 刘加平2, 周华新1, 刘建忠1, 张倩倩1, 韩方玉1
1 江苏苏博特新材料股份有限公司,南京 211103;
2 东南大学材料科学与工程学院,南京 211189
Effects of Coarse Aggregate and Steel Fiber on Uniaxial Tensile Property of Ultra-high Performance Concrete
ZHANG Lihui1, LIU Jiaping2, ZHOU Huaxin1, LIU Jianzhong1, ZHANG Qianqian1, HAN Fangyu1
1 Jiangsu Sobute New Materials Co. Ltd., Nanjing 211103;
2 School of Material Science and Engineering,Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 2568KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了提高含粗骨料超高性能混凝土(Ultra-high performance concrete, UHPC)的单轴拉伸性能,采用单轴拉伸试验和图像分析技术分别研究了粗骨料掺量、颗粒粒径对含粗骨料UHPC单轴拉伸性能和钢纤维在UHPC体系中分散性能的影响规律。结果表明,随着粗骨料掺量及颗粒粒径的增大,钢纤维在UHPC体系中的分散系数和取向系数显著降低,含粗骨料UHPC的单轴拉伸初裂强度、裂后强度和耗能也随之减小。根据粗骨料颗粒最大粒径与钢纤维体积分数、直径间的匹配关系式(Dmax=3df/(Vf)0.5),采用纤维混杂可以充分发挥多尺度纤维与具有不同粒径分布的骨料间的分级匹配关系;粗骨料体积分数和颗粒最大粒径分别为10%和10 mm时,采用平直钢纤维(直径0.12 mm、长度10 mm、体积掺量1.2%)和端钩钢纤维(直径0.35 mm、长度20 mm、体积掺量1.8%)混杂实现了含粗骨料UHPC的单轴拉伸性能的提升,其裂后强度和耗能分别为8.69 MPa和11.10 J。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丽辉
刘加平
周华新
刘建忠
张倩倩
韩方玉
关键词:  粗骨料  颗粒最大粒径  钢纤维  超高性能混凝土  单轴拉伸性能    
Abstract: In order to improve the uniaxial tensile property of ultra-high performance concrete (UHPC) with coarse aggregate, uniaxial tensile test and image analysis were employed to investigate the effects of dosage, maximum particle size of coarse aggregate on the tensile property of UHPC and steel fiber dispersion in the UHPC system, respectively. The experimental results showed that with the increase of dosage and particle size of coarse aggregate, the distribution coefficient and orientation coefficient of steel fiber in the UHPC systems were significantly decreased, resulting in the declines of tensile first cracking strength, post-cracking strength and energy absorption capacity of UHPC with coarse aggregate. Based on the matching relationship between maximum particle size of coarse aggregate and volume fraction and diameter of steel fiber (Dmax=3df/(Vf)0.5), the introduction of hybrid steel fibers can make full use of the hierarchical matching relationship between the multi-scale steel fibers and aggregates with different particle size distribution. The uniaxial tensile property of UHPC with coarse aggregate could be improved by the hybridization of straight steel fiber with 0.12 mm diameter, 10 mm length and 1.2% volume fraction and hooked-end steel fiber with 0.35 mm diameter, 20 mm length and 1.8% volume fraction when the volume fraction and maximum particle size of coarse aggregate were 10% and 10 mm, respectively. And the UHPC's tensile post-cracking strength and energy absorption capacity were 8.69 MPa and 11.10 J, respectively.
Key words:  coarse aggregate    maximum particle size    steel fiber    ultra-high performance concrete    uniaxial tensile property
               出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51438003); 江苏省土木工程材料重点实验室开放基金(CM2015-06); 江苏省科技计划青年基金(BK20141012)
通讯作者:  刘加平:男,1967年生,博士,教授,博士研究生导师,研究方向为超高性能水泥基材料 E-mail:liujiaping@cnjsjk.cn   
作者简介:  张丽辉:女,1989年生,硕士,工程师,研究方向为超高性能混凝土韧性提升技术 E-mail:zhanglihui@cnjsjk.cn
引用本文:    
张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
ZHANG Lihui, LIU Jiaping, ZHOU Huaxin, LIU Jianzhong, ZHANG Qianqian, HAN Fangyu. Effects of Coarse Aggregate and Steel Fiber on Uniaxial Tensile Property of Ultra-high Performance Concrete. Materials Reports, 2017, 31(23): 109-114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.015  或          http://www.mater-rep.com/CN/Y2017/V31/I23/109
1 Chen B C, Ji T, Huang Q W, et al. Review of research on ultra-high performance concrete[J]. J Architecture Civil Eng, 2014, 31(3):1(in Chinese).
陈宝春,季韬,黄卿维,等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报,2014,31(3):1.
2 Yoo D Y, Yoon Y S. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete[J]. Int J Concr Struct Mater, 2016, 10(2): 1.
3 Perry V H, Seibert P J. The use of UHPFRC (Ductal??) for bridges in North America: The technology, applications and challenges facing commercialization[C]∥Proceedings of Second International Symposium on Ultra High Performance Concrete. Kassel, 2008.
4 Schmidt M, Fehling E. Ultra-high-performance concrete: Research, development and application in Europe[J]. ACI Special publication, 2005, 228: 51.
5 Zhang Y S, Sun W, Liu S F, et al. Preparation of C200 green reactive powder concrete and its static-dynamic behaviors[J]. Cem Concr Compos, 2008, 30(9): 831.
6 Yang S L, Millard S G, Soutsosmn, et al. Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fiber reinforced concrete (UHPFRC)[J]. Constr Build Mater, 2009, 23(6): 2291.
7 Wille K, Naaman A E, Ei-tawil S, et al. Ultra-high performance concrete and fiber reinforced concrete: Achieving strength and ducti-lity without heat curing[J]. Mater Struct, 2012, 45(3): 309.
8 Zhao S J, Fan J J, Sun W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J]. Constr Build Mater, 2014, 50(2): 540.
9 Karmout M. Mechanical properties of ultra high performance concrete produced in gaza strip[D]. Iran: The Islamic University of Gaza, 2009.
10 Wang C, Yang C H, Liu F, et al. Preparation of ultra-high performance concrete with common technology and materials[J]. Cem Concr Compos, 2012, 34(4): 538.
11 Peng G F, Yang J, Gao Y X, et al. Factors influencing compressive strength of ultra-high-performance concrete with coarse aggregate [J]. J North China University of Water Resources and Electric Power, 2012, 33(6): 5(in Chinese).
朋改非,杨娟,高育欣,等.含粗骨料的超高性能混凝土抗压强度的影响因素[J].华北水利水电学院学报,2012,33(6):5.
12 Liu J Z, Han F Y, Cui G, et al. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete [J]. Constr Build Mater, 2016, 121: 310.
13 Park S H, Kim D J, Ryu G S, et al. Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J]. Cem Concr Compos, 2012, 34(2): 172.
14 Hannawi K, Bian H, Prince-agbodjan W, et al. Effect of different types of fibers on the microstructure and the mechanical behavior of ultra-high performance fiber-reinforced concretes[J]. Compos Part B Eng, 2016, 86: 214.
15 Wille K, Kim D J, Naaman A E. Strain-hardening UHP-FRC with low fiber contents[J]. Mater Struct, 2011, 44(3): 583.
16 Kang S T, Kim J K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cem Concr Res, 2011, 41(10): 1001.
17 Huang X Y, Ranade R, Li V C, et al. Development of green engineered cementitious composites using iron ore tailings as aggregates [J]. Constr Build Mater, 2013, 44(44): 757.
18 Liu J P, Li C F, Liu J Z, et al. Characterization of fiber distribution in steel fiber reinforced cementitious composites with low water-binder ratio[J]. Indian J Eng Mater Sci, 2011, 18(6): 449.
19 Liu J Z, Zhang L H, Li C F, et al. Dispersive characterization and control of fiber in polyvinyl alcohol fiber cement composites[J]. J Chin Ceram Soc, 2015, 43(8): 1061(in Chinese).
刘建忠, 张丽辉, 李长风, 等. 聚乙烯醇纤维在水泥基复合材料中的分散性表征及调控[J]. 硅酸盐学报, 2015, 43(8): 1061.
20 Nguyen D L, Ryu G S, Koh K T, et al. Size and geometry depen-dent tensile behavior of ultra-high-performance fiber-reinforced concrete[J]. Compos Part B Eng, 2014, 58: 279.
21 Li C F, Liu J Z, Zhou H X, et al. Tensile constitutive model of fiber reinforced cementitious composites [J]. J Hebei University Technology, 2014, 43(6): 35(in Chinese).
李长风,刘建忠,周华新, 等.纤维增强水泥基复合材料的拉伸本构关系模型[J].河北工业大学学报, 2014, 43(6): 35.
22 Ma J, Yang X Y. Selection of maximum particle size of coarse aggregate in steel fiber reinforced concrete[J]. Low Temperature Architecture Technol, 1997(2): 37(in Chinese).
马军, 杨向宁. 钢纤维混凝土粗骨料最大粒径的选择[J]. 低温建筑技术, 1997(2): 37.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[3] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[4] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[5] 李革, 徐泽华, 牛建刚. 塑钢纤维轻骨料混凝土细观破坏过程的数值模拟[J]. 《材料导报》期刊社, 2018, 32(14): 2412-2417.
[6] 余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
[7] 李季, 石少卿, 何秋霖, 王起帆. 钢管钢纤维高强混凝土抗冲击压缩性能的试验研究与数值模拟*[J]. CLDB, 2017, 31(23): 125-131.
[8] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[9] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[10] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[11] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[12] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
[13] 季韬, 林晓溁, 梁咏宁, 陈宝春, 杨政险. 钢纤维对掺花岗岩石粉UHPC的增强增韧:磷酸锌改性和纤维形状的影响及机理*[J]. CLDB, 2017, 31(23): 66-72.
[14] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[15] 王俊颜, 边晨, 肖汝诚, 马骉, 刘国平. 常温养护型超高性能混凝土的圆环约束收缩性能*[J]. CLDB, 2017, 31(23): 52-57.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed