Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22110130-9    https://doi.org/10.11896/cldb.22110130
  无机非金属及其复合材料 |
纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究
李少杰1, 张云峰2, 张玉令1,*, 闫军3, 杜仕国1, 陈博2
1 陆军工程大学弹药工程系,石家庄 050000
2 西北核技术研究所,西安 710000
3 河北交通职业技术学院路桥工程系,石家庄 050000
Experimental Study on Dynamic Response of Nano-modified Ultra-high Performance Concrete Slabs Under Explosion Loads
LI Shaojie1, ZHANG Yunfeng2, ZHANG Yuling1,*, YAN Jun3, DU Shiguo1, CHEN Bo2
1 Department of Ammunition Engineering,Army Engineering University,Shijiazhuang 050000,China
2 Northwest Institute of Nuclear Technology,Xi'an 710000,China
3 Department of Road and Bridge Engineering,Hebei Jiaotong Vocational and Technical College,Shijiazhuang 050000,China
下载:  全 文 ( PDF ) ( 25270KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究纳米改性超高性能混凝土板(UHPC)在爆炸荷载下的动态力学响应,设计了系列UHPC靶板并对其进行近场爆炸冲击试验,采用动态测试系统和相关传感器采集响应信号,对靶板在受载下的位移、应变、加速度等关键力学参数进行研究分析。结果表明,两次爆炸冲击下系列UHPC板的抗爆抗冲击性能均显著优于普通高强混凝土板,同时掺有钢纤维和碳纳米管(CNTs)的UHPC板(SF0.5CNT-UHPC、SF1.0CNT-UHPC)具有良好的抗变形能力和结构稳定性。随钢纤维含量的增加,UHPC板的应变峰值、加速度峰值和跨中最大挠度均明显减小,相应损伤程度减轻。使用等效单自由度分析从理论上计算了SF0.5CNT-UHPC、SF1.0CNT-UHPC板在弹性阶段的位移响应,发现跨中最大挠度的理论计算结果与实测值较为接近,两靶板误差分别为13.5%、8.7%。CNTs和钢纤维通过抑制不同尺度的缺陷显著提升了UHPC的强度、刚度和抗裂性,对UHPC表现出协同强化作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李少杰
张云峰
张玉令
闫军
杜仕国
陈博
关键词:  超高性能混凝土  碳纳米管  钢纤维  爆炸冲击  动态响应    
Abstract: In order to investigate the dynamic response of nano-modified ultra-high performance concrete (UHPC) slabs under explosion loads,a series of UHPC targets were designed and subjected to close-in explosion impacts.The key mechanical parameters of the targets under explosion loads were studied and analyzed by using the dynamic test system and relevant sensors to collect signals,such as displacement,strain and acce-leration.The results show that the anti-explosion performance of series UHPC slabs under two explosion impacts is significantly better than that of ordinary high-strength concrete.The UHPC slabs reinforced by both steel fibers (SF) and carbon nanotubes (CNTs) (i.e.,SF0.5CNT-UHPC and SF1.0CNT-UHPC) show excellent deformation resistance ability and structural stability.With the increase of SF content,the maximum mid span deflections,strain peaks and acceleration peaks of UHPC slabs significantly decrease,and the corresponding damage degrees reduce.The elastic displacement response of SF0.5CNT-UHPC and SF1.0CNT-UHPC slabs are theoretically calculated by using the equivalent single-degree-of-freedom analysis.The theoretical calculation results of the maximum deflection at the midspan are close to the measured values,and the errors of the above two slabs are 13.5% and 8.7%,respectively.It is concluded CNTs and steel fibers significantly improve the strength,stiffness and crack resistance of UHPC by suppressing the defects at different scales,which display synergistic reinforcement effects on UHPC.
Key words:  ultra-high performance concrete    carbon nanotubes    steel fiber    explosion loads    dynamic response
发布日期:  2024-06-25
ZTFLH:  TJ55  
  O383  
基金资助: 河北省军民融合科技创新项目(SJMYF2022Y22)
通讯作者:  *张玉令,陆军工程大学弹药工程系讲师。2006年毕业于军械工程学院获工学学士学位,2009年毕业于军械工程学院获军事化学与烟火技术专业硕士学位,2012年毕业于军械工程学院获兵器科学与技术专业博士学位,毕业后留校工作至今。主要从事爆炸冲击毁伤与工程防护等领域的教学和研究工作,发表相关学术论文40余篇。zhangyuling2009@163.com   
作者简介:  李少杰,2018年6月毕业于河南理工大学,获得理学学士学位。现为陆军工程大学弹药工程系硕博连读研究生,在杜仕国教授和张玉令讲师的指导下进行研究。目前主要从事爆炸冲击防护研究。
引用本文:    
李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
LI Shaojie, ZHANG Yunfeng, ZHANG Yuling, YAN Jun, DU Shiguo, CHEN Bo. Experimental Study on Dynamic Response of Nano-modified Ultra-high Performance Concrete Slabs Under Explosion Loads. Materials Reports, 2024, 38(11): 22110130-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110130  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22110130
1 Ren H Q, Mu Z M, Liu R Z. Penetration effects of precision guided wea-pons and engineering protection, Science Press, China, 2016, pp.16 (in Chinese).
任辉启, 穆朝民, 刘瑞朝. 精确制导武器侵彻效应与工程防护, 科学出版社, 2016, pp.16.
2 Zhang W H, Liu P Y, Lyu Y J. Materials Reports, 2019, 33(10), 3257 (in Chinese).
张文华, 刘鹏宇, 吕毓静. 材料导报, 2019, 33(10), 3257.
3 Zhao C F, He K C, Lu X, et al. Explosion and Shock Waves, 2021, 41(9), 8 (in Chinese).
赵春风, 何凯城, 卢欣, 等. 爆炸与冲击, 2021, 41(9), 8.
4 Liu S, Zhou Y, Zhou J, et al. Composite Structures, 2019, 226, 111271.
5 Liu G K, Liu R Z, Wang W, et al. Chinese Journal of Energetic Materials (Hanneng Cailiao), 2021, 29(2), 157 (in Chinese).
刘光昆, 刘瑞朝, 汪维, 等. 含能材料, 2021, 29(2), 157.
6 Huang L, Yuan M, Wei B, et al. Construction and Building Materials, 2022, 318, 125899.
7 Lee S H, Kim S, Yoo D Y. Construction and Building Materials, 2018, 185, 530.
8 Zhang W H, Zhang Z X, Liu P Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(8), 1155 (in Chinese).
张文华, 张仔祥, 刘鹏宇, 等. 硅酸盐学报, 2020, 48(8), 1155.
9 Park S H, Kim D J, Ryu G S, et al. Cement and Concrete Composites, 2012, 34(2), 172.
10 Meng W, Khayat K H. Transportation Research Record, 2016, 2592(1), 38.
11 Ramezani M, Dehghani A, Sherif M M. Construction and Building Materials, 2022, 315, 125100.
12 Pei C, Wei L, Qin Z, et al. Construction and Building Materials, 2022, 314, 125506.
13 Liew K M, Kai M F, Zhang L W. Composites Part A: Applied Science and Manufacturing, 2016, 91, 301.
14 Lu D, Shi X, Zhong J. Cement and Concrete Composites, 2022, 126, 104366.
15 Ruan Y, Han B, Yu X, et al. Composites Part A: Applied Science and Manufacturing, 2018, 112, 371.
16 Jung M, Lee Y, Hong S G, et al. Cement and Concrete Research, 2020, 131, 106017.
17 Huang H, Teng L, Gao X, et al. Cement and Concrete Research, 2022, 154, 106713.
18 Ruan Y F. Investigation on static and dynamic mechanical properties of cementitious composites with carbon nanotubes. Master's Thesis, Dalian University of Technology, China, 2019 (in Chinese).
阮燕锋. 碳纳米管水泥基复合材料静动态力学性能研究. 硕士学位论文, 大连理工大学, 2019.
19 Wu P T, Liu Z X, Wu C Q, et al. Journal of Tianjin University (Science and Technology), 2017, 50(9), 939 (in Chinese).
仵鹏涛, 刘中宪, 吴成清, 等. 天津大学学报(自然科学与工程技术版), 2017, 50(9), 939.
20 Yu Q, Zhuang W, Shi C. Cement and Concrete Composites, 2021, 124, 104258.
21 Ren G M, Wu H, Fang Q, et al. Construction and Building Materials, 2018, 164, 29.
22 Lai J Z, Zhu Y Y, Tan J M. Engineering Mechanics, 2016, 33(5), 193(in Chinese).
赖建中, 朱耀勇, 谭剑敏. 工程力学, 2016, 33(5), 193.
23 She W, Zhang Y S, Sun W, et al. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(1), 2777 (in Chinese).
佘伟, 张云升, 孙伟, 等. 岩石力学与工程学报, 2011, 30(1), 2777.
24 Li S, Zhang Y, Cheng C, et al. Construction and Building Materials, 2021, 310, 125262.
25 Liu H W. Material mechanics, Higher Education Press, China, 2017, pp.195 (in Chinese).
刘鸿文. 材料力学, 高等教育出版社, 2017, pp.195.
26 Song P, Wang X M, Gu X H, et al. Chinese Journal of Energetic Mate-rials (Hanneng Cailiao), 2011, 19(5), 544 (in Chinese).
宋浦, 王晓鸣, 顾晓辉, 等. 含能材料, 2011, 19(5), 544.
27 Liu Q L, Li H C, Peng Y J, et al. Acta Materiae Compositae Sinica, 2020, 37(4), 952 (in Chinese).
刘巧玲, 李汉彩, 彭玉娇, 等. 复合材料学报, 2020, 37(4), 952.
28 Konsta M S, Metaxa Z S, Shah S P. Cement and Concrete Research, 2010, 40(7), 1052.
29 Liu Q L. Multi-scale properties and mechanism of carbon nanotubes/cement nanocomposites. Ph. D. Thesis, Southeast University, China, 2015 (in Chinese).
刘巧玲. 碳纳米管增强水泥基复合材料多尺度性能及机理研究. 博士学位论文, 东南大学, 2015.
30 Meng W, Khayat K H. Composites Part B: Engineering, 2016, 107, 113.
31 Liu J T. The mechanical properties of nanomaterials reinforced reactive powder concrete. Ph. D. Thesis, Zhejiang University, China, 2016 (in Chinese).
刘金涛. 基于纳米材料的活性粉末混凝土及其基本力学性能研究. 博士学位论文, 浙江大学, 2016.
32 Qin Y, Xu D, Zhang S, et al. Construction and Building Materials, 2022, 340, 127396.
33 Li S, Yan J, Ma H, et al. Materials Research Express, 2023, 10(2), 25503.
34 Lee K, Shin J. International Journal of Steel Structures, 2016, 16(4), 1263.
35 Rigby S E, Tyas A, Bennett T. Engineering Structures, 2012, 45, 396.
36 Wang F Y, Liu T S. Damage theory and technology, Beijing Institute of Technology Press, China, 2009, pp.45 (in Chinese).
王凤英, 刘天生. 毁伤理论与技术, 北京理工大学出版社, 2009, pp.45.
[1] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[4] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[5] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[6] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[7] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[8] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[9] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[12] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[13] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[14] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[15] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed