Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22110098-7    https://doi.org/10.11896/cldb.22110098
  金属与金属基复合材料 |
Fe-3%Si合金薄带连铸板热处理过程层状异构组织演变的相场模拟研究
杨玉芳1,*, 胡晋龙2, 刘永博2, 王明涛2
1 沈阳工学院机械工程与自动化学院,辽宁 抚顺 113122
2 东北大学材料科学与工程学院,沈阳 110819
Study on the Evolution of Layered Heterogeneous Microstructure of Fe-3%Si Alloys Strip Continuous Casting Plate During Heat Treatment by Phase Field Simulation
YANG Yufang1,*, HU Jinlong2, LIU Yongbo2, WANG Mingtao2
1 School of Mechanical Engineering and Automation, Shenyang Institute of Technology, Fushun 113122, Liaoning, China
2 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
下载:  全 文 ( PDF ) ( 18937KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究基于Fe-3%Si合金铸轧板材组织特征,构建了不同类型柱状晶/等轴晶层状异构组织相场模型,实现了界面曲率为驱动力的情况下层状异构组织的高温粗化过程模拟,量化分析了层状异构特征对铸轧组织演化过程的影响规律。研究表明,由于晶粒长径比对晶粒尖端曲率的影响,当初始状态下柱状晶长径比较高时,在界面曲率的驱动下最终会形成等轴化的多晶组织;反之则等轴化程度减小。明确了不同类型异构组织演化特征,相同退火时间下组织的等轴化程度受其层状异构特征的影响,这一现象的本质是等轴晶通过自身演化引起柱状晶两端曲率变化,诱发柱状晶间的相互“吞噬”并发生等轴化,柱状晶则在部分结构的组织中生长至带钢表面后停止生长,最终保持柱状特征。本研究进一步加深了对铸态薄带中初始凝固组织在后续热处理时演化过程的认识,对硅钢制备工艺优化具有重要的理论指导意义和实际应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨玉芳
胡晋龙
刘永博
王明涛
关键词:  Fe-3%Si合金  薄带连铸  相场模拟  组织演化    
Abstract: Based on the microstructural characteristics of Fe-3%Si alloy strip continuous casting plates, a phase field model was employed to investigate the coarsening process driven by grain boundary curvature in alloy systems with varying combinations of columnar/equiaxed grains at 1 253 K. Aquantitative analysis was conducted to evaluate the impact of layered microstructure on the evolution process of strip continuous casting plates. The results indicate that when the ratio of the length to diameter of the columnar grain is high, equiaxed grains eventually form under the influence of grain boundary curvature, while the degree of equiaxation decreases with a low initial ratio. The study elucidates the evolution characteristics of different microstructures and reveals that the equiaxed level varies with the initial microstructure features. The phenomenon is attributed to the curvature change induced by equiaxed grains at both ends of the columnar ones, which leads to the mutual ‘engulfment' of columnar grains and equiaxation. In some cases, columnar grains maintain their columnar characteristics by growing to the surface of the strip steel. This study dee-pens our understanding of the evolution process in strip continuous casting plates during heat treatment and provides important theoretical and practical guidance for the optimization of silicon steel preparation processes.
Key words:  Fe-3%Si alloy    strip continuous casting    phase field simulation    microstructure evolution
发布日期:  2024-06-25
ZTFLH:  TB31  
基金资助: 辽宁省2020年高校创新人才计划(ljh-2020-389-2);辽宁省教育厅科研基金(LJKZ1335)
通讯作者:  *杨玉芳,沈阳工学院机械工程与自动化学院教授。2005年3月、2008年3月于东北大学分别获得工学硕士学位和博士学位。目前主要研究领域为计算材料学和先进不锈钢材料开发。496472891@qq.com   
引用本文:    
杨玉芳, 胡晋龙, 刘永博, 王明涛. Fe-3%Si合金薄带连铸板热处理过程层状异构组织演变的相场模拟研究[J]. 材料导报, 2024, 38(11): 22110098-7.
YANG Yufang, HU Jinlong, LIU Yongbo, WANG Mingtao. Study on the Evolution of Layered Heterogeneous Microstructure of Fe-3%Si Alloys Strip Continuous Casting Plate During Heat Treatment by Phase Field Simulation. Materials Reports, 2024, 38(11): 22110098-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110098  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22110098
1 Fang Y, Zhang J. Baosteel Technical Research, 2019, 13(3), 1.
2 Xia B, Han S, Zhang N, et al. China Metallurgy, 2018, 28(6), 4.
3 Liu Z, Yang P, Li X, et al. Journal of Physics and Chemistry of Solids, 2020, 136, 109165.
4 Wang K, Wang Y, Wei P, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3770.
5 Zhang G, Wang Q, Sha L T, et al. Acta Physica Sinica, 2020, 69(22), 226.
6 Zhang J, Li X, Xu D, et al. Journal of Materials Science & Technology, 2021, 90, 168.
7 Cao L X. Wang C Y. Journal of Physics, 2007(1), 413 (in Chinese).
曹莉霞, 王崇愚. 物理学报, 2007(1), 413.
8 Gao J, Thompson R G. Acta Materialia, 1996, 44(11), 4565.
9 Liu Y, Baudin T, Penelle R. Scripta Materialia, 1996, 34(11), 1679.
10 Raabd D. Annual Review of Materials Research, 2002, 32(1), 53.
11 Mori K I, Matsubara H, Noguchi N, et al. International Journal of Mechanical Sciences, 2004, 46(6), 841.
12 Song Y H, Wang M T, Ni J, et al. Chinese Physics B, 2020, 29(12), 128201.
13 Chen L Q. Annual Review of Materials Research, 2002, 16(32), 113.
14 Wang M T, Xu Y K, Hu J L, et al. Nanomaterials, 2022, 12, 4148.
15 He R, Wang M T, Zhang X G, et al. Modelling & Simulation in Mate-rials Science & Engineerin, 2016, 24, 055017.
16 Moelans N, Blanpain B, Wollants, P. Physical Review Letters, 2008, 101(2), 5502.
17 Fang F, Yang J, Zhang Y, et al. Journal of Magnetism and Magnetic Materials,2021, 535, 0304.
18 He R. Phase field simulation of grain growth and texture formation in AZ31 magnesium alloy containing second phase particles under external stress. Ph. D. Thesis, Northeast University, China, 2018.
何日. 外应力下含第二相颗粒的AZ31镁合金晶粒长大和织构形成的相场法模拟. 博士学位论文, 东北大学, 2018.
19 Liu H, Liu Z, Li C, et al. Materials Characterization, 2011, 62(5), 463.
[1] 王丽红, 满蛟, 姜一鸣, 刘庚根, 周建平. 外加载荷对热弹性马氏体正-逆相变影响机制的相场模拟研究[J]. 材料导报, 2024, 38(8): 22070156-7.
[2] 董书琳, 曲迎东, 陈瑞润, 郭景杰, 王琪, 李广龙, 张伟, 于波. Ti-44Al-6Nb-2Fe合金低温超塑性及高温拉伸组织演化[J]. 材料导报, 2024, 38(1): 22090130-6.
[3] 罗磊, 李向明, 魏岑, 王献. 基于相场模拟的倾斜共晶生长研究进展[J]. 材料导报, 2020, 34(11): 11114-11120.
[4] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[5] 朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed