Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 137-140    https://doi.org/10.11896/j.issn.1005-023X.2017.010.028
  计算模拟 |
基于微观组织演化的P91钢长时蠕变寿命预测*
朱麟,刘新宝,辛甜,潘成飞,刘剑秋
西北大学化工学院, 西安 710069
Prediction of Long-term Creep Rupture Time of P91 Steel Based on Microstructure Evolution
ZHU Lin, LIU Xinbao, XIN Tian, PAN Chengfei, LIU Jianqiu
School of Chemical Engineering,Northwest University, Xi’an 710069
下载:  全 文 ( PDF ) ( 1127KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对P91耐热钢在高温长时蠕变过程中微观组织演化行为的综合考察,探讨了影响其长时蠕变寿命的主要因素,其中包括强化相(M23C6、MX)与析出相(Laves、Z相)的粗化现象以及和位错间的交互作用等。在此基础上,通过对蠕变幂率本构方程中耦合相应内应力参量,并结合Monkman-Grant方程,从微观组织演化的角度建立了P91耐热钢长时蠕变寿命预测模型。最后利用该模型对873 K(600 ℃)时的P91耐热钢的相关蠕变寿命进行了预测,结果显示其计算数值与实验数据吻合较好,从而进一步表明基于微观组织演化的预测模型在P91耐热钢长时蠕变寿命的研究中具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱麟
刘新宝
辛甜
潘成飞
刘剑秋
关键词:  材料科学基础科学  蠕变寿命预测  微观组织演化  内应力    
Abstract: According to the analysis of microstructure evolution of P91 heat-resistant steel during the long-term creep, main factors determining its creep rupture time were discussed in detail, such as the coarsing of precipitated phases (M23C6, MX, Laves phase and Z phase) and interactions between them and dislocations. Based on these results, a prediction model of creep rupture time for P91 heat-resistant steel was provided by introducing the internal stress to power-law creep equation and Monkman-Grant equation. Besides, the calculated creep rupture time at 873 K with the proposed model was very close to those values obtained by experiments, which further confirmed that the present method based on the microstructure evolution offers a potential tool to predict the long-term creep rupture time of P91 heat-resistant steel.
Key words:  foundational disciplines in materials science    creep rupture time prediction    microstructure evolution    internal stress
                    发布日期:  2018-05-08
ZTFLH:  TG144  
基金资助: *国家自然科学基金(51371142)
通讯作者:  刘新宝,男,1976年生,教授,博士研究生导师,研究方向为先进能源化工装备材料制备、材料损伤分析与信赖域评价、材料组织控制与物理性能评价E-mail:xbliu2011@163.com   
作者简介:  朱麟:男,1993年生,博士研究生,研究方向为金属材料蠕变性能及可靠性评价E-mail:18717379109@163.com
引用本文:    
朱麟,刘新宝,辛甜,潘成飞,刘剑秋. 基于微观组织演化的P91钢长时蠕变寿命预测*[J]. 材料导报编辑部, 2017, 31(10): 137-140.
ZHU Lin, LIU Xinbao, XIN Tian, PAN Chengfei, LIU Jianqiu. Prediction of Long-term Creep Rupture Time of P91 Steel Based on Microstructure Evolution. Materials Reports, 2017, 31(10): 137-140.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.028  或          http://www.mater-rep.com/CN/Y2017/V31/I10/137
1 Zhang Zuhui. Study of high temperature & high pressure tube used for ultra supercritical unit[D].Beijing: North China Electric Power University (Beijing),2011(in Chinese).
张祖辉. 超超临界机组高温高压管道应用分析[D]. 北京:华北电力大学(北京),2011.
2 Zhao Caili, Liu Xinbao, Hao Qiao’e, et al. Progress in prediction methods of creep-rupture time for elevated-temperature metal components [J]. Mater Rev:Rev,2014,28(12):55(in Chinese).
赵彩丽, 刘新宝, 郝巧娥,等. 高温金属构件蠕变寿命预测的研究进展[J]. 材料导报:综述篇,2014,28(12):55.
3 Hu P, Yan W, Sha W, et al. Microstructure evolution of a 10Cr heat-resistant steel during high temperature creep [J]. J Mater Sci Technol,2011,27(4):344.
4 Gourgues A F. Evolution of dislocation density, size of subgrains and MX-type precipitates in a P91 steel during creep and during thermal ageing at 600 ℃ for more than 100 000 h [J]. Mater Sci Eng A,2010,527(16-17):4062.
5 Hald J. Microstructure and long-term creep properties of 9-12% Cr steels☆ [J]. Int J Pressure Vessels Piping,2008,85(1-2):30.
6 Spigarelli S, Cerri E, Bianchi P, et al. Interpretation of creep beha-vior of a 9Cr-Mo-Nb-V-N (T91) steel using threshold stress concept [J]. Mater Sci Technol,1999,15(12):1433.
7 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6, carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment[J]. Metall Mater Trans A,2004,35(4):1255.
8 Abe F, Taneile M, Sawada K. Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides [J]. Int J Pressure Vessels Piping,2007,84(1-2):3.
9 Yuan Chao, Hu Zhengfei, Wu Yanjun. Property and degradation analysis of 9Cr heat-resistant steel [J]. Metall Funct Mater,2012,19(1):26(in Chinese).
袁超, 胡正飞, 武艳君. 9Cr马氏体耐热钢的组织性能分析和失效研究[J]. 金属功能材料,2012,19(1):26.
10 Zhang Ruihui, Zhang Chi, Xia Zhixin, et al. Optimizing control of precipitates in T91 ferritic heat-resistant steel[J]. Acta Metall Sinica,2013,49(9):1075(in Chinese).
张芮辉, 张弛, 夏志新,等.T91铁素体耐热钢析出相的优化控制[J]. 金属学报,2013,49(9):1075.
11 Krug M E, Dunand D C. Modeling the creep threshold stress due to climb of a dislocation in the stress field of a misfitting precipitate [J]. Acta Mater,2011,59(13):5125.
12 Wang Xue, Li Yong, Ren Yaoyao, et al. Effect of Laves phase precipitation on redistribution of alloying elements in P92 steel [J]. Acta Metall Sinica,2014,50(10):1203(in Chinese).
王学, 李勇, 任遥遥,等. Laves相析出对P92钢合金元素再分布的影响[J].金属学报,2014,50(10):1203.
13 Srinivas P B S, Rajkumar V B, Hari K C. Numerical simulation of precipitate evolution in ferritic-martensitic power plant steels [J]. Calphad-computer Coupling Phase Diagrams Thermochem,2012,36(3):1.
14 Vo N Q, Liebscher C H, Rawlings M J S, et al. Creep properties and microstructure of a precipitation-strengthened ferritic Fe-Al-Ni-Cr alloy [J]. Acta Mater,2014,71(6):89.
15 Dudova N, Plotnikova A, Molodov D, et al. Structural changes of tempered martensitic 9%Cr-2%W-3%Co steel during creep at 650 ℃[J]. Mater Sci Eng A,2013,534:632.
16 Povolo F. Comments on the Monkman-Grant and the modified Monkman-Grant relationships [J]. J Mater Sci,1985,20(6):2005.
17 Bendick W, Cipolla L, Gabrel J, et al. New ECCC assessment of creep rupture strength for steel grade X10CrMoVNb9-1 (Grade 91) [J]. Int J Pressure Vessels Piping,2010,87(6):304.
[1] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[2] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed