Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23050190-10    https://doi.org/10.11896/cldb.23050190
  高分子与聚合物基复合材料 |
复合材料层压板S-N曲线模型的综述与评估
冯炜森1, 杨成鹏1,*, 贾斐2
1 西北工业大学力学与土木建筑学院,西安 710072
2 西安电子科技大学机电工程学院,西安 710071
Review and Evaluation of S-N Curve Models for Composite Laminates
FENG Weisen1, YANG Chengpeng1,*, JIA Fei2
1 School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
下载:  全 文 ( PDF ) ( 3099KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 S-N模型是分析预测材料及其结构疲劳寿命的重要基础。本文对复合材料层压板的S-N曲线模型进行了全面综述,并将其归纳为基于数据拟合思想的经验模型和考虑损伤机理的半经验模型。研究发现,应力比是S-N模型需要考虑的关键载荷参数,而包含应力比的半经验模型较少、经验模型更为匮乏。拟定了模型评估五个基本标准,选取了两种材料体系、不同铺层结构层合板在不同应力比条件下的八组疲劳数据,对典型S-N模型的表征能力进行了分析评估。结果表明:Weibull模型、Wu模型和Epaarachchi模型在不同疲劳影响因素下均能表现出较强的拟合能力,整体拟合精度较高,而且Weibull模型和Wu模型具有拟合S-N曲线全区间的能力;Basquin模型虽然在理论和工程中经常使用,但预测精度通常并不理想;相较于不包含应力比的模型,包含应力比的模型其表征精度通常比较差,适用范围反而受限;同时,与半经验模型相比,经验模型通常满足边界条件,对不同形式S-N曲线的拟合优度更高,适应能力更强,且适用范围更广。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯炜森
杨成鹏
贾斐
关键词:  复合材料层压板  疲劳  寿命预测  S-N模型  模型评估    
Abstract: S-N curve model is an important basis for analyzing and predicting the fatigue life of materials and their structures. This paper presents a comprehensive review of S-N models for composite laminates, and categorizes them into empirical models from data fitting conception and semi-empirical models that consider damage mechanism. It is found that stress ratio is a key loading parameter to be considered in S-N model, while there are fewer semi-empirical models and more scarce empirical models that include stress ratio. In order to verify and evaluate those typical S-N models, five basic criteria for model evaluation were suggested, and eight sets of fatigue data were selected from two material systems with different laminated structures under different stress ratios. The results indicate that the Weibull model, Wu model, and Epaarachchi model can exhibit stronger fitting ability under various fatigue influencing factors with high overall fitting accuracy, and the Weibull model and Wu model also have the ability to fit the entire region of the S-N curve. The Basquin model, although often used in theory and engineering, is not ideal in terms of its accuracy. Compared with those models without stress ratio, the characterization accuracy of the model with stress ratio is usually poor and its scope of application is limited. Meanwhile, compared with semi-empirical model, the empirical model is easier to meet the boundary conditions, has a better fit to different forms of S-N curves, is more adaptable, and has a wider scope of application.
Key words:  composite laminate    fatigue    lifetime prediction    S-N model    model evaluation
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TB332  
基金资助: 国家自然科学基金(12072274)
通讯作者:  *杨成鹏,西北工业大学力学与土木建筑学院副教授,博士研究生导师。2006年西北工业大学工程力学专业本科毕业,2011年西北工业大学固体力学博士毕业后留校工作至今。目前主要从事先进复合材料及其结构的力学行为表征研究。发表论文30余篇,包括Composites Part A、Ceramics International、Journal of the American Ceramic Society、Journal of the European Ceramic Society等。yang@mail.nwpu.edu.cn   
作者简介:  冯炜森,2021年6月于中北大学获得工学学士学位。现为西北工业大学力学与土木建筑学院硕士研究生,在杨成鹏副教授的指导下进行研究。目前主要从事先进复合材料疲劳性能研究。
引用本文:    
冯炜森, 杨成鹏, 贾斐. 复合材料层压板S-N曲线模型的综述与评估[J]. 材料导报, 2024, 38(22): 23050190-10.
FENG Weisen, YANG Chengpeng, JIA Fei. Review and Evaluation of S-N Curve Models for Composite Laminates. Materials Reports, 2024, 38(22): 23050190-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050190  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23050190
1 Du S Y. Acta Materiae Compositae Sinica, 2007, 24(1), 1(in Chinese).
杜善义. 复合材料学报, 2007, 24(1), 1.
2 Cheng X Q, Du X Y. Journal of Beijing University of Aeronautics And Astronautics, 2021, 47(7), 1311(in Chinese).
程小全, 杜晓渊. 北京航空航天大学学报, 2021, 47(7), 1311.
3 Zhou S, Yan L, Fu K K, et al. Thin-Walled Structures, 2021, 158, 107173.
4 Degrieck J, Van P W. Applied Mechanics Reviews, 2001, 54(4), 279.
5 Zhao S, Zhang J W. Acta Materiae Compositae Sinica, 2020, 37(10), 2473(in Chinese).
赵晟, 张继文. 复合材料学报, 2020, 37(10), 2473.
6 Mao H, Mahadevan S. Composite Structures, 2002, 58, 405.
7 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(3), 125.
8 Gao Q L, Xin H H, Mosallam A. Lecture Notes on Data Engineering and Communications Technologies, 2020, 110, 464.
9 Sendeckyj G P. In: 1979 Symposium on Test Methods and Design Allowables for Fibrous Composites. Dearborn, 1981, pp.245.
10 Freire Júnior R C S, Belísio A S. Composites Part B: Engineering, 2014, 56, 582.
11 Wöhler A. Zeitschrift Bauwesen, 1870, 20, 73.
12 Stromeyer C E. Proceedings of the Royal Society A, 1914, 90, 411.
13 Kohout J, Věchet S. International Journal of Fatigue, 2001, 23(2), 175.
14 Ye L. Composites Science and Technology, 1989, 36, 339.
15 Arutyunyan A R. Doklady Physics, 2019, 64(10), 394.
16 Read P J C L, Shenoi R A. Marine Structures, 1995, 8(3), 257.
17 Degrieck J, Paepegen W V. Applied Mechanics Reviews, 2001, 54(4), 279.
18 Barbosa J F, Correia J A, Júnior R F, et al. Advances in Mechanical Engineering, 2019, 11(8), 1.
19 Vanhari A K, Fagan E, Goggins J. Composite Structures, 2022, 287, 115384.
20 Burhan I, Kim H S. Journal of Composites Science, 2018, 2(3), 3.
21 Zhang M. Research on fatigue behavior and mechanism of FV520B in very high cycle regime. Ph. D. Thesis, Shandong University, China, 2015(in Chinese).
张明. 离心压缩机叶轮材料FV520B超高周疲劳行为与机理研究. 博士学位论文, 山东大学, 2015.
22 Epaarachchi J A, Clausen P D. Composites Part A: Applied Science and Manufacturing, 2003, 34(4), 313.
23 Noël M. Construction and Building Materials, 2019, 206, 279.
24 Zhai H J, Yao W X. Advances in Mechanics, 2002, 32(1), 69(in Chinese).
翟洪军, 姚卫星. 力学进展, 2002, 32(1), 69.
25 Basquin O H. Proceedings-American Society for Testing Materials, 1910, 10, 625.
26 Weibull W. Fatigue and Fracture Metals, 1952, 4, 182.
27 Harik V M, klinger J R, Bogetti T A. International Journal of Fatigue, 2002, 24(2-4), 455.
28 Revuelta D, Cuartero J, Miravete A, et al. Composite Structures, 2000, 48(1), 183.
29 Hwang W, Han K S. Journal of Composite Materials, 1986, 20(2), 154.
30 Han K S, Hwang W. Acta Materiae Compositae Sinica, 1987, 4(1), 16(in Chinese).
韩京燮, 黄云峰. 复合材料学报, 1987, 4(1), 16.
31 Kim H S, Zhang J. Journal of Reinforced Plastics and Composites, 2001, 20(10), 834.
32 Kim H S, Huang S. Journal of Composite Science, 2021, 5(3), 76.
33 Wu F Q, Yao W X. Journal of Mechanical Strength, 2004, 26(S), 127(in Chinese).
吴富强, 姚卫星. 机械强度, 2004, 26(S), 127.
34 Wu F Q, Yao W X. Chinese Journal of Aeronautics, 2008, 21(3), 241.
35 Mu P G, Wan X P, Zhao M Y. Key Engineering Materials, 2011, 462-463, 484.
36 Mivehchi H, Varvani-Farahani A. Procedia Engineering, 2010, 2, 2011.
37 Huang J, Garnier C, Pastor M L, et al. MATEC Web of Conferences, 2018, 165, 07008.
38 Liao D, Zhu S P, Keshtegar B, et al. International Journal of Mechanical Sciences, 2020, 181, 105685.
39 Song L K, Bai G C, Fei C W. Aerospace Science and Technology, 2019, 95, 106539.
40 Zhu S P, Liu Q, Zhou J, et al. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41(6), 1291.
41 Ma Q, An Z W, Bai X Z, et al. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(21), 5665.
42 Gao J X, Xu R X, Wu Z F, et al. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(9), 4862.
43 Jessen S M, Plumtree A. Composites, 1991, 22(3), 181.
44 Flore D, Wegener K. International Journal of Fatigue, 2016, 82, 689.
45 Poursartip A. Composites Science and Technology, 1986, 25(3), 193.
46 Poursartip A, Beaumont P W R. Composites Science and Technology, 1986, 25(4), 283.
47 Wang S S, Suemasu H, Chim E S M. Engineering Fracture Mechanics, 1987, 21(12), 1084.
48 D'amore A, Caprino G, Stupak P, et al. Science and engineering of composite materials, 1996, 5(1), 1.
49 Seghini M C, Touchard F, Sarasini F, et al. International Journal of Fatigue, 2020, 139, 105800.
50 Cormier L, Joncas S. Journal of Composite Materials, 2018, 52(2), 207.
51 Deng Y C, Zhang Y N, Li Z N. Aircraft Design, 2001(3), 26(in Chinese).
邓扬晨, 章怡宁, 郦正能. 飞行设计, 2001(3), 26.
52 Roohollah S, Anastasios P V, Thomas K. Composites Part A: Applied Science and Manufacturing, 2012, 43(3), 445.
53 Hu J Q, Ji C M, Chen S, et al. International Journal of Applied Mechanics, 2020, 12(9), 2050104.
54 Feng Y, Ma B, Zhang T, et al. Applied Composite Materials, 2021, 28(1), 129.
55 Yang H S, Qiao P, Wolcott M P. Polymer Composites, 2010, 31(4), 553.
56 Jin H B. Fiber Reinforced Plastics/Composites, 1999, 6(6), 18(in Chinese).
金宏彬. 玻璃钢/复合材料, 1999, 6(6), 18.
57 Zhang W J, Zhou Z G, Zhang B M, et al. Materials and Design, 2015, 66, 77.
58 Wyzgoski M G, Novak G E. Journal of Materials Science, 2005, 40(2), 295.
59 Feng W S, Yang C P, Jia F. Materials Reports, 2024, 38(9), 22100058(in Chinese).
冯炜森, 杨成鹏, 贾斐. 材料导报, 2024, 38(9), 22100058.
60 Passipoularidis V A, Philippidis T P, Brondsted P. International Journal of Fatigue, 2011, 33(2), 132.
61 Kensche C W, Stuttgart D. Technical Soaring, 1995, 19(3), 69.
62 Xiao X R. Journal of Composites Materials, 1999, 33(12), 1141.
63 Gathercole N, Reiter H, Adam T, et al. International Journal of Fatigue, 1994, 16(8), 523.
64 Kuang J X, Zhang C T, Hao Z M. Journal of Vibration And Shock, 2020, 39(9), 181(in Chinese).
旷金鑫, 张春涛, 郝志明. 振动与冲击, 2020, 39(9), 181.
65 Gao D Y, Yao W X, Wu T. Journal of Mechanical Strength, 2018, 40(6), 1451(in Chinese).
高代阳, 姚卫星, 吴涛. 机械强度, 2018, 40(6), 1451.
66 Fotouh A, Wolodko J D, Composites: Part B, 2014, 62, 175.
67 Konur O, Matthews F L. Composites, 1989, 20(4), 317.
68 Kawai M, Itoh N. Journal of Composite Materials, 2014, 48(5), 571.
69 Yang Z Q. Research on fatigue behavior of glass fiber reinforced polymer composites. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2008(in Chinese).
杨忠清. 玻璃纤维增强树脂基复合材料疲劳行为研究. 博士学位论文, 南京航空航天大学, 2008.
[1] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[2] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[3] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[4] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[7] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[8] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[9] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[10] 兰雪江, 张翛, 王永宝, 郝忠卿. 水泥稳定再生碎石物理力学性能研究进展[J]. 材料导报, 2024, 38(2): 22040402-12.
[11] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[12] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[13] 芦燕, 余振超, 王如琦. 模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究[J]. 材料导报, 2024, 38(19): 22090030-7.
[14] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[15] 高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed