Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23020256-9    https://doi.org/10.11896/cldb.23020256
  无机非金属及其复合材料 |
碳泡沫复合材料夹层结构准静态横压性能
罗智涛1,2, 庄淇凯1,2, 李小琪3, 李凯2,*, 程小全1,4,*
1 北京航空航天大学航空科学与工程学院,北京 100191
2 军事科学院防化研究院化学防护研究所,北京 100191
3 北京空间飞行器总体设计部,北京 100094
4 北京航空航天大学宁波创新研究院,浙江 宁波 315800
Quasi-static Indentation Properties of Carbon Foam Sandwich Structure with CFRP Face Sheets
LUO Zhitao1,2, ZHUANG Qikai1,2, LI Xiaoqi3, LI Kai2,*, CHENG Xiaoquan1,4,*
1 School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
2 Department of Chemical Protection, Research Institute of Chemical Defense, Beijing 100191, China
3 Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
4 Ningbo Institute of Technology, Beihang University, Ningbo 315800, Zhejiang, China
下载:  全 文 ( PDF ) ( 21714KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳泡沫是一种比强度高、导热导电率可控的新型功能结构材料,在复合材料成型模具制造等领域具有广阔的应用前景。本工作通过试验研究碳泡沫复合材料夹层结构在准静态横压状态下的损伤过程,提出适用于横观各向同性碳泡沫的失效判据,分别建立不考虑胶黏剂渗入区域和考虑渗入区域的夹层结构有限元模型,利用试验结果对模型的有效性进行验证,并进一步讨论相关参数的影响。结果表明,碳泡沫复合材料夹层结构在准静态横压后主要发生芯材的压缩破坏和剪切破坏,以及上面板的基体开裂和分层破坏。损伤过程为芯材塌陷、芯材45°或竖直开裂、芯材与面板分离,同时伴随上面板基体开裂和分层。与PMI泡沫和铝泡沫的损伤形貌相比,碳泡沫内部存在少量随机分布的裂纹。有限元模型满足分析精度要求,可以很好地模拟出夹层结构的准静态横压损伤过程。准静态横压能量和极限载荷随面板厚度和芯材厚度的增大而增大,与胶层厚度和压头直径没有明显的相关性;面板使用±45°铺层可有效提高夹层结构的准静态横压能量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗智涛
庄淇凯
李小琪
李凯
程小全
关键词:  碳泡沫  失效判据  复合材料  夹层结构  准静态横压    
Abstract: Carbon foam is a new functional and structural material with characteristics like high specific strength and adjustable conductivity and thermal conductivity, which has wide application prospect in carbon foam-based polymer matrix composites tooling manufacturing. In this work, the damage process of carbon foam sandwich structure with carbon fiber reinforced composites (CFRP) under quasi-static transverse indentation was studied experimentally, and the failure criterion applicable to transversely isotropic carbon foam was proposed. Finite element models of sandwich structure without considering the adhesive penetration area and considering the penetration area were established respectively. The effectiveness of the model was verified by the test results, and the influence of relevant parameters was further discussed. The results show that the sandwich structure mainly occurs the compression and shear failure of carbon foam, and the matrix crack and delamination of top face sheet. The damage process consists of carbon foam collapsing, carbon foam 45° or vertical cracking and carbon foam-face sheets separating accompanied by matrix cracking and the delamination of top face sheet. Compared with the damage morphologies of PMI foam and aluminium foam, there are several random cracks in the carbon foam. The finite element models meet the analysis accuracy requirements, and the numerical prediction of damage process shows good agreement with experimental results. The further analysis shows the greater the thickness of carbon foam and face sheets are, the more quasi-static indentation energy and the greater peak force, and the diameter of indenter and the thickness of adhesive have no obvious relationship with quasi-static indentation energy and peak force. Face sheets with ±45° layups can improve quasi-static indentation energy of the sandwich structure effectively.
Key words:  carbon foam    failure criterion    composite    sandwich structure    quasi-static indentation
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TB332  
通讯作者:  *李凯,军事科学院防化研究院研究员,1998年于国防科技大学应用化学专业本科毕业,2001年于防化研究院环境工程专业硕士毕业后工作至今,2006年于防化研究院环境工程专业博士毕业。目前从事碳基微纳米孔材料制备技术和装备应用研发工作。发表学术论文20余篇。750455@sohu.com
程小全,北京航空航天大学航空科学与工程学院教授。1998年6月毕业于北京航空航天大学飞行器设计及应用力学系,飞行器设计专业博士学位。同年转到北京航空材料研究院进行博士后研究,2000年8月到北京航空航天大学工作至今。主要从事飞行器复合材料结构损伤容限设计与分析技术研究。在国内外期刊发表论文230多篇,授权专利14项,出版著作11部。xiaoquan_cheng@buaa.edu.cn   
作者简介:  罗智涛,2021年6月于北京航空航天大学获得工学学士学位。现为北京航空航天大学航空科学与工程学院博士研究生。目前主要研究领域为复合材料结构设计与分析技术研究。
引用本文:    
罗智涛, 庄淇凯, 李小琪, 李凯, 程小全. 碳泡沫复合材料夹层结构准静态横压性能[J]. 材料导报, 2024, 38(16): 23020256-9.
LUO Zhitao, ZHUANG Qikai, LI Xiaoqi, LI Kai, CHENG Xiaoquan. Quasi-static Indentation Properties of Carbon Foam Sandwich Structure with CFRP Face Sheets. Materials Reports, 2024, 38(16): 23020256-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020256  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23020256
1 Zheng Z X, Wang D G, Liang G J, et al. Materials Reports, 2022, 36(7), 227 (in Chinese).
郑梓璇, 王德刚, 梁国杰, 等. 材料导报, 2022, 36(7), 227.
2 Ju J G, Li W X, Xue Y D. Aerospace Shanghai, 2008, 25(2), 42 (in Chinese).
居建国, 李文晓, 薛元德. 上海航天, 2008, 25(2), 42.
3 Glass D E. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, 2008, pp. 2682.
4 Rowe M M, Guth R A, Merriman D J. Sampe Journal, 2005, 41(4), 63.
5 Li X Q, Zhuang Q K, Wang Z Y, et al. Polymer Materials Science & Engineering, 2020, 36(10), 177 (in Chinese).
李小琪, 庄淇凯, 王志勇, 等. 高分子材料科学与工程, 2020, 36(10), 177.
6 Cheng X Q, Kou C H, Li Z N. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(5), 57 (in Chinese).
程小全, 寇长河, 郦正能. 北京航空航天大学学报, 1998, 24(5), 57.
7 Zheng X X, Zheng X T, Shen Z, et al. Acta Aeronautica et Astronautica Sinica, 2010, 31(5), 928 (in Chinese).
郑晓霞, 郑锡涛, 沈真, 等. 航空学报, 2010, 31(5), 928.
8 Cai J L, Yu H, Wang Y Y, et al. Aerospace Materials and Technology, 2011, 41(3), 84 (in Chinese).
蔡建丽, 余欢, 王云英, 等. 宇航材料工艺, 2011, 41(3), 84.
9 Xie Z H, Liu H H, Tian J. Journal of Materials Engineering, 2014, 369(2), 13 (in Chinese).
谢宗蕻, 刘海涵, 田江. 材料工程, 2014, 369(2), 13.
10 Zniker H, Ouaki B, Bouzakraoui S, et al. Case Studies in Construction Materials, 2022, 16, 844.
11 Cheng S L, Zhao X Y, Xin Y J, et al. Composite Structures, 2015, 129, 157.
12 Wang X Z, Zhou X, Zhu B J, et al. Journal of National University of Defense Technology, 2017, 39(1), 189 (in Chinese).
王新筑, 周雄, 朱炳杰, 等. 国防科技大学学报, 2017, 39(1), 189.
13 Yang K, Gong P, Yang L, et al. E-Polymers, 2021, 22(1), 12.
14 Goh G D, Neo S J C, Dikshit V, et al. Journal of Sandwich Structures & Materials, 2022, 24(2), 1206.
15 Ye H, Dai X, Yuan T, et al. Reviews on Advanced Materials Science, 2021, 60(1), 404.
16 American Society for Testing and Materials. ASTM D7766/D7766M-16. Standard practice for damage resistance testing of sandwich constructions, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States, 2016.
17 Arezoo S, Tagarielli V, Petrinic N, et al. Journal of Materials Science, 2011, 46(21), 6863.
18 Zhao L, Qin T, Zhang J, et al. Journal of Composite Materials, 2013, 47(23), 2995.
19 Haszin Z. Journal of Applied Mechanics, 1980, 47(2), 329.
20 Chang F K, Chang K. Y. Journal of Composite Materials, 1987, 21(9), 834.
21 Ye L. Composites Science & Technology, 1988, 33(4), 257.
22 Camanho P P, Matthews F L. Journal of Composite Materials, 1999, 33(24), 2248.
23 Tserpes K I, Labeas G, Papanikos P, et al. Composites Part B: Engineering, 2002, 33(7), 521.
[1] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[6] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[7] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[8] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[9] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[10] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[11] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[12] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[13] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[14] 贾宝惠, 任鹏, 宋挺, 崔开心, 肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响[J]. 材料导报, 2024, 38(5): 22100282-7.
[15] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed